Refine Your Search

Topic

Search Results

Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW)

2006-04-03
2006-01-1392
This paper presents on-going finite element modeling efforts of friction stir spot welding (FSSW) process using Abaqus/Explicit as a finite element solver. Three-dimensional coupled thermal-stress model was used to calculate thermo-mechanical response of FSSW process. Adaptive meshing and advection schemes, which makes it possible to maintain mesh quality under large deformations, is utilized to simulate the material flow and temperature distribution in FSSW process. The predicted overall deformation shape of the weld joint resembles that experimentally observed. Temperature and stress graphs in the radial direction as well as temperature-deformation distribution plots are presented.
Technical Paper

The Study of Modelling and Development Environment for Virtual Manufacturing Systems

2000-08-21
2000-01-3095
For adapting the demands of the rapid changing and enhancing the competing capability of enterprise in the international market, various modern manufacturing systems have been put forward, which are aimed at various specifications, perfect performance and high quality, low production cost and short manufacturing cycle of products, virtual manufacturing system ( VMS) has been emerged as the times require, which is effective technology to meet the challenge of 21 century's manufacturing industries. Based on analyzing modern manufacturing systems, according to the characteristics and requirement of VMS, in this paper, the architecture, the key technologies and the implement way of VMS were explored, and development environment for VMS was put forward, which is a powerful tool for building VMS.
Technical Paper

Study on the Use of Springs in a Dual Free Piston Engine Alternator

2016-10-17
2016-01-2233
The free piston engine combined with a linear electric alternator has the potential to be a highly efficient converter from fossil fuel energy to electrical power. With only a single major moving part (the translating rod), mechanical friction is reduced compared to conventional crankshaft technology. Instead of crankshaft linkages, the motion of the translator is driven by the force balance between the engine cylinder, alternator, damping losses, and springs. Focusing primarily on mechanical springs, this paper explores the use of springs to increase engine speed and reduce cyclic variability. A numeric model has been constructed in MATLAB®/Simulink to represent the various subsystems, including the engine, alternator, and springs. Within the simulation is a controller that forces the engine to operate at a constant compression ratio by affecting the alternator load.
Journal Article

Sensitivity Analysis and Control Methodology for Linear Engine Alternator

2019-04-02
2019-01-0230
Linear engine alternator (LEA) design optimization traditionally has been difficult because each independent variable alters the motion with respect to time, and therefore alters the engine and alternator response to other governing variables. An analogy is drawn to a conventional engine with a very light flywheel, where the rotational speed effectively is not constant. However, when springs are used in conjunction with an LEA, the motion becomes more consistent and more sinusoidal with increasing spring stiffness. This avoids some attractive features, such as variable compression ratio HCCI operation, but aids in reducing cycle-to-cycle variation for conventional combustion modes. To understand the cycle-to-cycle variations, we have developed a comprehensive model of an LEA with a 1kW target power in MATLAB®/Simulink, and an LEA corresponding to that model has been operated in the laboratory.
Journal Article

Resonance of a Spring Opposed Free Piston Engine Device

2016-04-05
2016-01-0568
Recent free piston engine research reported in the literature has included development efforts for single and dual cylinder devices through both simulation and prototype operation. A single cylinder, spring opposed, oscillating linear engine and alternator (OLEA) is a suitable architecture for application as a steady state generator. Such a device could be tuned and optimized for peak efficiency and nominal power at unthrottled operation. One of the significant challenges facing researchers is startup of the engine. It could be achieved by operating the alternator in a motoring mode according to the natural system resonant frequency, effectively bouncing the translator between the spring and cylinder, increasing stroke until sufficient compression is reached to allow introduction of fuel and initiation of combustion. To study the natural resonance of the OLEA, a numeric model has been built to simulate multiple cycles of operation.
Technical Paper

Quantification of Yard Hostler Activity and the Development of a Representative Yard Hostler Cycle

2009-11-02
2009-01-2652
Yard hostlers are tractors (switchers) used to move containers at ports and storage facilities. While many speed-time driving cycles for assessing emissions and performance from heavy-duty vehicles exist, a driving cycle representative of yard hostler activity at Port of Long Beach, CA was not available. Activity data were collected from in-use yard hostlers as they performed ship loading/unloading, rail loading/unloading and other yard routines, primarily moving containers on trailers or carts. The activity data were then used to develop four speed-time driving cycles with durations of 1200 seconds, representing light and heavy ship activities and light and heavy load rail activities. These cycles were constructed using actual speed-time data collected during activity logging and the cycles created were statistically comparable to each subset of activity data.
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Technical Paper

Neural Network-Based Diesel Engine Emissions Prediction Using In-Cylinder Combustion Pressure

1999-05-03
1999-01-1532
This paper explores the feasibility of using in-cylinder pressure-based variables to predict gaseous exhaust emissions levels from a Navistar T444 direct injection diesel engine through the use of neural networks. The networks were trained using in-cylinder pressure derived variables generated at steady state conditions over a wide speed and load test matrix. The networks were then validated on previously “unseen” real-time data obtained from the Federal Test Procedure cycle through the use of a high speed digital signal processor data acquisition system. Once fully trained, the DSP-based system developed in this work allows the real-time prediction of NOX and CO2 emissions from this engine on a cycle-by-cycle basis without requiring emissions measurement.
Technical Paper

Modularity in Spark Ignition Engines: A Review of its Benefits, Implementation and Limitations

1998-10-19
982688
A conceptual understanding of modularity in internal combustion engines (defined as design, operation, and sensing on an individual cylinder basis) is presented. Three fundamental modular concepts are identified. These are dissimilar component sizing and operation, component deactivation, and direct sensing. The implementation of these concepts in spark ignition internal combustion engines is presented. Several modular approaches are reviewed with respect to breathing, fueling, power generation, and sensing. These include dissimilar orientation, geometry, and activation of multiple induction runners, partial or total disablement of valves through direct or indirect means, dissimilar fueling of individual cylinders, skipping the combustion event of one or more cylinders, deactivation of dissimilar individual cylinders or a group of cylinders, and individual cylinder gas pressure and mixture strength sensing.
Technical Paper

Misfire, Knock and NOx Mapping of a Laser Spark Ignited Single Cylinder Lean Burn Natural Gas Engine

2004-06-08
2004-01-1853
Evermore demanding market and legislative pressures require stationary lean burn natural gas engines to operate at higher efficiencies and reduced levels of emissions. Higher in-cylinder pressures and leaner air/fuel ratios are required in order to meet these demands. The performance and durability of spark plug ignition systems suffer as a result of the increase in spark energy required to maintain suitable engine operation under these conditions. Advancing the state of the art of ignition systems for these engines is critical to meeting increased performance requirements. Laser-spark ignition has shown potential to improve engine performance and ignition system durability to levels required meet or exceed projected requirements. This paper discusses testing which extends previous efforts [1] to include constant fueling knock, misfire, thermal efficiency, and NOx emissions mapping of a single cylinder lean burn natural gas engine.
Journal Article

Lightweight Composite Air Cargo Containers

2016-09-27
2016-01-2119
Air cargo containers are used to load freight on various types of aircrafts to expedite their handling. Fuel cost is the largest contributor to the total cost of ownership of an air cargo container. Therefore, a better fuel economy could be achieved by reducing the weight of such containers. This paper aims at developing innovative, lightweight design concepts for air cargo containers that would allow for weight reduction in the air cargo transportation industry. For this purpose, innovative design and assembly concepts of lightweight design configurations of air cargo containers have been developed through the applications of lightweight composites. A scaled model prototype of a typical air cargo container was built to assess the technical feasibility and economic viability of creating such a container from fiber-reinforced polymer (FRP) composite materials. The paper is the authoritative source for the abstract.
Technical Paper

Knock Prediction in Reciprocating Gas-Engines Using Detailed Chemical Kinetics

2001-03-05
2001-01-1012
Two and three-dimensional test cases were simulated using a detailed kinetic mechanism for di-methyl ether to represent methane combustion. A piston-bowl assembly for the compression and expansion strokes with combustion has been simulated at 1500 RPM. A fine grid was used for the 2-D simulations and a rather coarse grid was used for the 3-D calculations together with a k-ε subgrid-scale turbulence model and a partially stirred reactor model with three time scales. Ignition was simulated artificially by increasing the temperature at one point inside the cylinder. The results of these simulations were compared with experimental results. The simulation involved an engine with a homogeneous charge of methane as fuel. Results indicate that pressure fluctuations were captured some time after the ignition started, which indicates knock conditions.
Technical Paper

Isometric Strength During Scaffold End Frame Disassembly

1999-05-18
1999-01-1907
Overexertion injuries comprise the largest category of nonfatal injuries among construction workers. These injuries typically occur when the biomechanical stresses associated with tasks such as lifting, carrying, pushing, etc., exceed the worker’s strength capacity. Two studies were conducted to measure the whole-body isometric strength capability of 56 construction workers. The first study examined the effect of four typical postures (2 symmetric lifts and 2 asymmetric lifts) associated with scaffold end frame disassembly. The effect of posture on isometric strength capability was significant; the strength capability ranged from 366 N to 676 N. The second study evaluated the effect of hand separation distance (46 cm, 86.4 cm, and 116.8 cm) and vertical hand placement (knuckle, elbow, and acromial heights) on isometric force during symmetric lifting postures. The interaction effect of hand separation distance - vertical hand placement on isometric strength capability was significant.
Technical Paper

Integrated Quality System in Computer Integrated Manufacturing

2000-08-21
2000-01-3101
Since the quality activities is through out the product whole life-cycle, the quality management should be a integrated quality system, facing the product life-cycle. In CIMS(Computer Integrated Manufacturing System), with the assistance of computer and its relative technologies, IQS(Integrated Quality System) can integrate the quality management technique cells into an organic whole, then the quality management will be more coherent and efficient. In this paper the concept, features, components and functions of IQS are been discussed and the key technologies are pointed out.
Journal Article

Innovative Structural Concepts for Lightweight Design of Heavy Vehicle Systems

2008-10-07
2008-01-2654
The objective of this paper is to devise innovative lightweight design concepts for heavy vehicle structures. A 1 to 4 prototype of a trailer was built to assess the feasibility of use of polymer composites and to have first hand experience with possible bonding methods to join the design parts. In the current trailer configurations, floor assembly constitutes 70% of the overall weight. The results indicated that sandwich technology with a lightweight core that adds flexural stiffness to the overall design provides a solution to decrease the weight of heavy vehicle systems.
Technical Paper

Influence of Materials Properties on Process Planning Effectiveness

2017-03-28
2017-01-0227
Process planning, whether generative or variant, can be used effectively as through the incorporation of computer aided tools that enhance the evaluator impact of the dialogue between the design and manufacturing functions. Expert systems and algorithms are inherently incorporated into the software tools used herein. This paper examines the materials related implications that influence design for manufacturing issues. Generative process planning software tools are utilized to analyze the sensitivity of the effectiveness of the process plans with respect to changing attributes of material properties. The shift that occurs with respect to cost and production rates of process plans with respect to variations in specific material properties are explored. The research will be analyzing the effect of changes in material properties with respect to the design of a specific product that is prismatic and is produced exclusively by machining processes.
Journal Article

Fundamental Analysis of Spring-Varied, Free Piston, Otto Engine Device

2014-04-01
2014-01-1099
Conventional crank-based engines are limited by mechanical, thermal, and combustion inefficiencies. The free piston of a linear engine generator reduces frictional losses by avoiding the rotational motion and crankshaft linkages. Instead, electrical power is generated by the oscillation of a translator through a linear stator. Because the free piston is not geometrically constrained, dead center positions are not specifically known. This results in a struggle against adverse events like misfire, stall, over-fueling, or rapid load changes. It is the belief that incorporating springs will have the dual benefit of increasing frequency and providing a restoring force to aid in greater cycle to cycle stability. For dual free piston linear engines the addition of springs has not been fully explored, despite growing interest and literature.
Technical Paper

Experimental Investigation of Dielectrics for Use in Quarter Wave Coaxial Resonators

2007-04-16
2007-01-0256
Current research has involved manipulating the ignition inside of the combustion chamber. It has been demonstrated that an RF plasma flame can be generated from microwaves in a Quarter Wave Coaxial Cavity Resonator (QWCCR). By using this method, it may become possible for researchers to improve combustion and ignition characteristics of a modern internal combustion engine. Filling a plasma cavity with an appropriate dielectric medium can both alter electromagnetic properties and provide a suitable protective barrier to the harsh condition inside of a combustion cylinder. It is the purpose of this paper is to investigate both the operating frequency and quality factor of dielectric-filled cavities, as well as to suggest dielectrics that would be suitable for such an application.
Technical Paper

Experimental Investigation of Combustion Characteristics in a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural-Gas Spark-Ignition Operation

2019-09-09
2019-24-0124
Recent development in hydraulic fracking made natural gas (NG) to be a promising alternative gaseous fuel for heavy-duty diesel engines. The existing compression ignition (CI) engine can be retrofitted to NG spark ignition (SI) operation by replacing the diesel injector with a spark plug and fumigating NG into the intake manifold. However, the original diesel piston geometry (flat head and bowl-in-piston chamber) was usually retained to reduce modification cost. The goal of this study was to increase the understanding of the NG lean-burn characteristics in a diesel-like, fast-burn SI combustion chamber. The experimental platform can operate in conventional (i.e., all engine parts are metal) or in optical configuration (i.e., the stock piston and cylinder block are replaced with a see-through piston and an extended cylinder block). The optical data indicated a fast-propagated flame inside the piston bowl.
X