Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

The Fatigue Behavior of Fastener Joints

2008-08-19
2008-01-2259
The fatigue behavior of Hilok fastener joints under constant amplitude loading has been investigated experimentally. The effects of load transfer in an unbalanced joint configuration was characterized in terms of a stress severity factor relative to the open-hole configuration. The experimental data indicates that the clamp-up forces dominate the performance of fastener joints with the open-hole fatigue life being the lower bound at the stress levels investigated. The failure modes were observed to transition from a net-section type failure across the minimum section to a fretting induced failure at some distance from the hole. The experimental data has been used to develop stress severity factors to be used as a measure of the fatigue quality of the fastener joints.
Technical Paper

Refill Friction Stir Spot Joining Rivet Replacement Technology

2016-09-27
2016-01-2130
The Refill Friction Spot Joining (RFSJ) is an emerging solid-state spot welding technology that thermo-mechanically creates a molecular-level bond between the work-pieces. RFSJ does not consume any filler or foreign materials so that no additional weight is introduced to the assembly. As the solid-to-liquid phase transition is not involved in RFSJ in general, there is no lack of fusion or material deterioration caused by liquefaction and solidification. Unlike the conventional friction stir spot welding, RFSJ produces a spot joint with a perfectly flush surface finish without a key or exit hole. Currently, the aerospace industry employs solid rivets for fastening the primary structures as they meet the baseline requirements and have well-established standards and specifications.
Technical Paper

ProRAPP: A Computer Program for Propeller/Rotor Noise Prediction

1998-09-28
985523
The current emphasis on environment protection by reducing noise pollution has led to stricter noise standards for general aviation aircraft. As a result, there is a growing demand for a computational tool to predict the noise during the design process. A computer program, called ProRAPP, has been developed for the prediction of noise generated by propeller/rotor blades. The acoustic pressure is calculated using a form of Ffowcs Williams-Hawkings equation which is suitable for numerical implementation. For noise predictions, the observer can either move with the propeller/rotor hub or it can be fixed to the ground. Experimental data from both wind tunnel and flight tests are used to validate the numerical results.
Technical Paper

Preliminary Design Considerations for Zero Greenhouse Gas Emission Airplanes

2004-04-20
2004-01-1803
Global warming concerns are stimulating accelerated research and development of alternative fuels and propulsion systems for automobiles. The potential application of these emerging technologies to airplanes is reviewed. Preliminary designs of zero greenhouse gas emission airplanes using hydrogen fuel and either internal combustion or fuel cell-electric motor propulsion are presented for a wide body jet transport, medium jet transport, business jet, and single engine propeller airplane. The hydrogen fueled internal combustion engine airplanes offer the easiest path to zero emissions, but the greater efficiency of the fuel cell airplanes allows designs requiring substantially less fuel. The single engine propeller airplane is the easiest to modify for hydrogen fuel, because of the relatively high mass and volume of the engine being replaced. Technology improvements needed to make zero emission airplanes viable are suggested.
Technical Paper

Parametric Investigation of Ice Shedding from a Business Jet Aircraft

2007-09-24
2007-01-3359
Ice particles shed from aircraft surfaces are a safety concern because they can damage aft-mounted engines and other aircraft components. Ice shedding is a random and complex phenomenon. The randomness of the ice fragment geometry, size, orientation and shed location in addition to potential particle breakup during flight poses considerable simulation challenges. Current ice shedding analysis tools have limited capabilities due to the lack of experimental aerodynamic coefficients for the forces and moments acting on the ice fragment. A methodology for simulating the shedding of large ice particles from aircraft surfaces was developed at Wichita State University. This methodology combines experimental aerodynamic characteristics of ice fragments, computational fluid dynamics, trajectory analysis and the Monte Carlo method to provide probability maps of shed particle footprints at desired locations.
Journal Article

Operational Loads Monitoring of a Fleet of Beech 1900D Aircraft

2008-08-19
2008-01-2232
Presented here are analyses and statistical summaries of data collected from 11,299 flight operations recorded on 6 BE-1900D aircraft during routine commuter service over a period of three years. Basic flight parameters such as airspeed, altitude, flight duration, etc. are shown in a form that allows easy comparison with the manufacturer's design criteria. Lateral ground loads are presented for ground operations. Primary emphasis is placed on aircraft usage and flight loads. Maneuver and gust loads are presented for different flight phases and for different altitude bands. In addition, derived gust velocities and various coincident flight events are shown and compared with published operational limits.
Technical Paper

Further Results of Natural Laminar Flow Flight Test Experiments

1985-04-01
850862
Flight test experiments were conducted to measure the extent and nature of natural laminar flow on a smoothed test region of a swept-wing business jet wing. Surface hot film aneraometry and sublimating chemicals were used for transition detection. Surface pressure distributions were measured using pressure belts. Engine noise was monitored by a microphone attached to the wing surface to study possible acoustic effects on stability of the laminar boundary layer, Side-slip conditions were flown to simulate changes in effective wing sweep. Flight instrumentation and ground data analysis techniques and a method for measuring intermittency of turbulence are described, Correlation was obtained between the hot film gage signals and chemicals for transition detection. Cross-flow vortices were observed for some flight conditions. Results of spectral and statistical analysis of the hot film signals for various flight test conditions are presented.
Technical Paper

Experimental Investigation of Ice Adhesion

1999-04-20
1999-01-1584
An experimental study was conducted to investigate ice-adhesion on clean and coated aluminum surfaces. A test apparatus using the parallel plate linear shear technique was designed along with a data acquisition system for conducting the tests and recording the experimental data. A low pulling rate was applied to specially prepared test specimens for measuring the strength of ice adhesion for a range of test conditions. The effects of surface roughness, surface contamination, and water impurity on ice adhesion were investigated. In addition, tests were conducted to evaluate the effectiveness of a low ice-adhesion coating applied to aluminum test specimens. The results obtained showed that the bond between ice and metal was considerably lower for tap water than for distilled water. For the clean and coated aluminum surfaces the strength of ice adhesion varied with specimen roughness. However, no clear trend was established between ice adhesion strength and surface roughness.
Technical Paper

Damage Tolerance of Honeycomb Sandwich Composite Panels

2002-04-16
2002-01-1537
During this study, a number of 8.5-inch by 11.5-inch flat honeycomb sandwich panels were inflicted with low energy impact damage, inspected non-destructively, and tested for residual in-plane compressive strength. Each panel had either a 3/8-inch or 3/4-inch low density Nomex honeycomb core, and either 2-ply, 4-ply or 6-ply face sheets. The face sheets were either carbon or Eglass (prepreg) fabric. The panels were either clamped or simply supported in a test fixture during impact from a gravity assisted drop mechanism, and impacted with either a 1-inch or 3-inch diameter spherical indenter. After impact the damage to each panel was characterized by (1) ultrasonic through-transmission to obtain a c-scan representing planar damage area, (2) indentation volume and depth, and finally (3) visual inspection to rate the damage according to a predetermined rating scale. The panels were then tested for in-plane compressive strength.
Technical Paper

As9100 Registration Difficulties and Organizational Benefits: A Supplier Satisfaction Survey

2006-08-30
2006-01-2438
A supplier satisfaction survey was developed and administered to 129 Aircraft suppliers who are AS9100 registered. The primary objective of the survey was to assess organizational benefits, attributed to the AS9100 standard, and registration process difficulties. Survey results from 49 responses indicated that the primary reason for seeking AS9100 registration was customer requirement, followed by improving production and service. Further analysis indicated that the top three difficulties were evaluating effectiveness of employee training, obtaining and analyzing data on customer feedback and satisfaction, and monitoring and measuring processes. The top three reported benefits, improved quality awareness among employees, an increase in employee training, and improved internal communication, respectively, were all non-financial in nature.
X