Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Research on Integration of Automotive Exhaust-Based Thermoelectric Generator with Front Muffler

In order to make full use of engine exhaust heat, the thermoelectric module been used to contribute to thermoelectric power generation in the automotive. At present, the thermoelectric generators (TEGs) have been developing with continuously advances in thermoelectric technology. And almost all of the existing thermoelectric technologies are adding a gas tank to the vehicle exhaust system which increases the exhaust back pressure and occupying excessive space of the vehicle chassis. In this study, a new TEG integrated with a front silencer muffler (FMTEG) is proposed. The muffler is reshaped as the heat exchanger which has a hexagon cross-section. The water tank and clamping mechanism have been redesigned for the new heat exchanger. The FMTEG system’s dimensions are small that can well meet the installation requirements and has a good compatibility with the vehicle exhaust system.
Technical Paper

Numerical Investigation of Power Generation Enhancement for Exhaust Heat Exchanger with Cylindrical Grooves in Thermoelectric Generator Systems

For vehicle thermoelectric generator, heat would be directly transferred into electricity by thermoelectric modules because there was temperature difference between heat exchanger and water tank. The electrical power generation was deeply influenced by temperature difference, temperature uniformity and topological structure of TEG. In previous works, increasing the difference of temperature would significantly enhance the power generation of TEG and inserted fins were always applied to enhance heat transfer in parallel-plate heat exchanger. But fins would result in a large backpressure which was not conductive to efficiency of the engine.In current study, to enhance heat transfer rates and outside surface temperature, cylindrical grooves on the top and bottom surface in heat exchanger was proposed. The cylindrical grooves could increase the heat transfer area and enhance the turbulence intensity, meanwhile there was no inserts in the fluid to block the flow.