Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Vehicle-GIS Assistant Driving System for Real-time Safety Speed Warning on Mountain Roads

2017-03-28
2017-01-1400
Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
Technical Paper

The Analysis of the Stiffness-Damping Parameters of a H-Bahn Vehicle

2017-06-05
2017-01-1890
H-Bahn ("hanging railway") refers to the suspended, unmanned urban railway transportation system. Through the reasonable platform layout, H-Bahn can be easily integrated into the existing urban transit system. With the development of urban roads, the associated rail facilities can be conveniently disassembled, moved and expanded. The track beam, circuits, communication equipment, and sound insulation screen are all installed in a box-type track beam so that the system can achieve a high level of integration and intelligence. The carriage of the modern H-banh vehicle is connected with the bogies by two hanging devices. The vehicle is always running in the box-type track beam; therefore there are less possibilities of derailment. Consequently, the key work focuses on the running stability evaluation and curve negotiation performance analysis.
Technical Paper

Simulation Study on Vehicle Road Performance with Hydraulic Electromagnetic Energy-Regenerative Shock Absorber

2016-04-05
2016-01-1550
This paper presents a novel application of hydraulic electromagnetic energy-regenerative shock absorber (HESA) into commercial vehicle suspension system and vehicle road performance are simulated by the evaluating indexes (e.g. root-mean-square values of vertical acceleration of sprung mass, dynamic tire-ground contact force, suspension deflection and harvested power; maximum values of pitch angle and roll angle). Firstly, the configuration and working principle of HESA are introduced. Then, the damping characteristics of HESA and the seven-degrees-of-freedom vehicle dynamics were modeled respectively before deriving the dynamic characteristics of a vehicle equipped with HESA. The control current is fixed at 7A to match the similar damping effect of traditional damper on the basis of energy conversion method of nonlinear shock absorber.
Technical Paper

Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber

2018-04-03
2018-01-0582
The current paper proposes a hydraulic interconnected suspension system (HIS) based on a hydraulic energy-regenerative shock absorber (HESA) comparatively with the passive suspensions. The structure and working principles of the HIS system are introduced in order to investigate the damping performance and energy regeneration characteristics of the proposed system. Then, the dynamic characteristics of the HIS-HESA system have been investigated based on a 4-DOF longitudinal half vehicle model. In the simulation, two different road inputs were used in the dynamic characterization of the HIS-HESA; the warp sinusoidal excitation, and the random road signal. In addition, a comparative analysis was provided for the dynamic responses of the half vehicle model for both the HIS-HESA and the conventional suspension. Furthermore, a parametric analysis of the HIS-HESA has been carried out highlining the key parameters that have a remarkable effect on the HIS-HESA performance.
Technical Paper

Pavement Characteristic Judgment Method Based on Vehicle Speed Change

2018-04-03
2018-01-1088
The road feature has an important influence on the safe speed of the unmanned vehicle and the safe space between two vehicles. Real-time access to the features of the road ahead of time and timely adjustment of engine torque are significant to unmanned driving. Most of the researches nowadays make full use of vehicle sensor technology and environment perception technology. Vehicle sensor is widely used to collect the features of the road. While in this paper, a new type of road feature extraction is proposed based on vehicle speed change. Under the premise of less sensor installed, vehicle speed-time data series is collected. The pavement parameters can be estimated with vehicle speed. Based on the vehicle dynamics, this paper studies the relationship between vehicle speed and rolling resistance. Different road features have different influences on road friction resistance.
Technical Paper

Over-the-Horizon Safety Speed Warning System for Heavy-Duty Vehicle in Mountain Areas

2017-03-28
2017-01-0091
The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
Technical Paper

On-Board Mass and Center of Gravity of Motor Vehicles Measurement System

2017-03-28
2017-01-0431
The heavy-duty vehicles have large transportation capacity. Gross mass and center of gravity position of the heavy-duty vehicles vary with the cargo mass and the driving condition, which affect driving safety and handling stability. Gross mass and center of gravity position of the vehicles are usually measured on fixed test platform, and the vehicles are stationary or pass the platform slowly in the measurement process. Most dynamic weighing system could not measure the center of gravity position of the vehicles. On-board mass and center of gravity of motor vehicles measurement system mainly based on the tire pressure information could measure gross mass and center of gravity position accurately in the driving process. The measurement errors of the sensors are effectively decreased by filtering collected sensor data. The relationship between the tire pressure and the tire load is built when the vehicle is stationary.
Technical Paper

Energy-Harvesting Potential and Vehicle Dynamics Conflict Analysis under Harmonic and Random Road Excitations

2018-04-03
2018-01-0568
Energy has the worldwide concern since the World War. Recently, the energy harvesting technology has got more attraction in different fields and applications. Hence, in a world where energy becomes rare and expensive, even the small quantities are worth to be harvested where it can be exploited in different applications. Vehicle suspension is one of the vibration power dissipation sources in which the undesired vibration is dissipated into heat waste. Accordingly, the principal motivation of this study is exploitation the conflict between the potentially harvested power and vehicle dynamics in automotive suspension system induced by road irregularity. Therefore, in terms of RMS conflict diagrams, the conflict between the potential power and vehicle dynamics are sufficiently and comprehensively defined considering a vehicle speed of 20 m/s.
Technical Paper

Dynamic Modeling and State Estimation for Multi-In-Wheel-Motor-Driven Intelligent Vehicle

2017-09-23
2017-01-1996
Dynamic modeling and state estimation are significant in the trajectory tracking and stability control of the intelligent vehicle. In order to meet the requirement of the stability control of the eight-in-wheel-motor-driven intelligent vehicle, a full vehicle dynamics model with 12 degrees of freedom, including the longitudinal, lateral, yaw and roll motion of the body, and rotational motion of 8 wheels, is established for the research of the intelligent vehicle in this paper. By simulation with MATLAB/SIMULINK and by comparison with the TruckSim software, the reliability and practicality of the dynamics model are verified. Based on the established dynamics model, an extended Kalman filter (EKF) state observer is proposed to estimate the vehicle sideslip angle, roll angle and yaw rate, which are the key parameters to the stability control of the intelligent vehicle.
Technical Paper

Downhill Safety Assistant Driving System for Battery Electric Vehicles on Mountain Roads

2019-09-15
2019-01-2129
When driving in mountainous areas, vehicles often encounter downhill conditions. To ensure safe driving, it is necessary to control the speed of vehicles. For internal combustion engine vehicles, auxiliary brake such as engine brake can be used to alleviate the thermal load caused by the continuous braking of the friction brake. For battery electric vehicles (BEVs), regenerative braking can be used as auxiliary braking to improve brake safety. And through regenerative braking, energy can be partly converted into electrical energy and stored in accumulators (such as power batteries and supercapacitors), thus extending the mileage. However, the driver's line of sight in the mountains is limited, resulting in a certain degree of blindness in driving, so it is impossible to fully guarantee the safety and energy saving of downhill driving.
Technical Paper

Differential Speed Steering Control for Four-Wheel Distributed Electric Vehicle

2019-04-02
2019-01-1235
In order to perform differential control instead of the mechanical differential and improve the steering performance of distributed electric vehicles, a two-level differential speed steering control strategy is proposed. Firstly, an upper-layer controller to track the yaw rate is designed based on PID feedback and 3-D lookup table model, which could shorten the response time and reduce the impact of model parameters mismatch. Then, in order to improve the robustness to external disturbances and parameter uncertainties, a lower-layer controller to track the wheel speed is proposed based on integral sliding mode control. Moreover, three simulations are conducted to validate the proposed strategy. The first simulation results indicate that the driving torques of the inner and outer wheels are distributed properly to avoid wheel slip. In the second simulation, when the conventional steering system fails, the proposed control strategy could avoid vehicle losing steering function.
Technical Paper

Development of an Integrated Braking Control Strategy for Commercial Vehicles

2015-01-14
2015-26-0080
Commercial vehicle plays an important role during transportation process under the demand of high speed, convenience and efficiency. So improving active safety of commercial vehicle has become a research topic. Due to the fact that braking characteristic is the basic and most closely related to safe driving of vehicle's performances, this paper aims to improve the braking performance by researching into an integrated control method based on the mature ABS products. Firstly, a strategy which gives priority to ABS and differential yaw moment control, complementary with the hydraulic active suspension control is proposed. In comparison with ABS, the combined control of brake system and suspension system is designed not only for preventing wheels lock. But the directional control to avoid roll or spin is more focused on. Then in order to run the novel method correctly, the controlled variables and evaluation criteria are illustrated briefly.
Technical Paper

Development and Test of ESC Controller with Driver-In-the-Loop Platform

2017-09-23
2017-01-1993
This paper presents a Driver-In-the-Loop (DIL) bench test system for development of ESC controller. The real-time platform is built-up based on NI/PXI system and the real steering/throttle/braking actuator. In addition, the CarSim provides the vehicle model and the animator for virtual driving environment. A hierarchical ESC controller is proposed in MATLAB/Simulink then download into PXI. In the upper motion controller, the sliding mode theory is adopted and the logic threshold algorithm is used in the lower slip controller. Finally, ESC test is implemented under typical conditions by DIL and Model-In-the-Loop (MIL). The results show that, DIL could make up the shortage of driver model which can’t accurately simulate the emergency response of real driver. Therefore, DIL test could verify the ESC controller more accurately and effectively with considering the human-vehicle-road environment.
Technical Paper

Development and Research of Laser Ranging Vehicle Driving Deviation Test System

2019-04-02
2019-01-0926
Before the new car rolls from the line, due to assembly errors, inaccurate four-wheel positioning, etc., the vehicle will run off on a flat road, which will affect the driving comfort and safety. At present, most automobile manufacturers choose to perform the deviation test in the process of vehicle rolls from the line. Compared with other detection methods, the online deviation test system is developed with high precision of laser ranging, fast response and good reliability, which can realize fast and high-precision detection of vehicle deviation. In this paper, test system software is developed based on the LABVIEW, a variety of communication methods to build the communication system, using information check and queue task processing to control, to meet the test needs. Firstly, the calculation model of the deviation of the test system is established.
Journal Article

Design of the Linear Quadratic Control Strategy and the Closed-Loop System for the Active Four-Wheel-Steering Vehicle

2015-05-05
2015-01-9107
In the field of active safety, the active four-wheel-steering (4WS) system seems to be an attractive alternative and an effective tool to improve the vehicles' handling stability in lane-keeping control performance. Under normal using condition, the vehicle's lateral acceleration is comparatively small, and the mathematic relationship between the small side force excitation and the small slip angle of the tire is in the linear region. Furthermore, the effects of roll, heave, and pitch motions are neglected as well as the dynamic characteristics of the tires and suspension system in this work. Therefore, the linear quadratic control (LQC) theory is used to ensure that the output of the 4WS control system can keep track of the desired yaw rate and zero-sideslip-angle response can also be realized at the same time.
Technical Paper

Analysis of Passive Low Power Phase Change Heat Dissipation Method for Electric Vehicle Motor

2019-04-02
2019-01-1256
The electric vehicle motor is developing toward high power density, at the same time brings serious temperature rise problem, which affect the driving motor performance, efficiency, and useful life. Liquid cooling is usually used to solve the problem, but its energy consumption is large and the reliability is poor. In order to solve this problem, this paper proposes a heat dissipation method to improve the reliability and energy efficiency of the driving motor heat dissipation system. The method uses heat pipes heat transfer, and the heat pipes cold end are cooled by vehicle facing the wind. By establishing the motor temperature rise model, heat transfer model and vehicle dynamics model, this paper analyzes the maximum temperature region and reliability of the driving motor heat dissipation system, calculates and analyzes the efficiency of the driving motor under different driving conditions.
Technical Paper

A Non-Contact Overload Identification Method Based on Vehicle Dynamics

2019-04-02
2019-01-0490
The vehicle overload seriously jeopardizes traffic safety and affects traffic efficiency. At present, the static weighing station and weigh-in-motion station are both relatively fixed, so the detection efficiency is not high and the traffic efficiency is affected; the on-board dynamic weighing equipment is difficult to be popularized because of the problem of being deliberately damaged or not accepted by the purchaser. This paper proposes an efficient, accurate, non-contact vehicle overload identification method which can keep the road unimpeded. The method can detect the vehicle overload by the relative distance (as the characteristic distance) between the dynamic vehicle's marking line and the road surface. First, the dynamics model of the vehicle suspension is set up. Then, the dynamic characteristic distance of the traffic vehicle is detected from the image acquired by the calibrated camera based on computer vision and image recognition technology.
X