Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The MEOW Experiment: Measuring Cognitive Performance of Planetary Analog Base Crewmembers

2003-07-07
2003-01-2539
Sustained crew performance under conditions of isolation, confinement and increased risk is a key contributor to the success of manned space exploration missions. Measuring crew performance and identifying the factors affecting it is therefore crucial both during actual space missions and as part of precursor activities on the ground. Planetary analog bases play an important role in this context. These integrated simulation facilities allow the operational, hardware, and human side of all mission-related elements to be combined, and thus permit the capturing of interactions among these elements. The crew on board such a station is exposed to stressors and other conditions similar to those encountered during space missions. Planetary analog bases therefore represent a valuable resource for better understanding the dynamics of crew performance.
Technical Paper

Reduction in the Iodine Content of Shuttle Drinking Water: Lessons Learned

1999-07-12
1999-01-2117
Iodine is the disinfectant used in U.S. spacecraft potable water systems. Recent long-term testing on human subjects has raised concerns about excessive iodine consumption. Efforts to reduce iodine consumption by Shuttle crews were initiated on STS-87, using hardware originally designed to deiodinate Shuttle water prior to transfer to the Mir Space Station. This hardware has several negative aspects when used for Shuttle galley operations, and efforts to develop a practical alternative were initiated under a compressed development schedule. The alternative Low Iodine Residual System (LIRS) was flown as a Detailed Test Objective on STS-95. On-orbit, the LIRS imparted an adverse taste to the water due to the presence of trialkylamines that had not been detected during development and certification testing. A post-flight investigation revealed that the trialkylamines were released during gamma sterilization of the LIRS resin materials.
Technical Paper

Fluid Containers for Life Support Systems and Payloads

2003-07-07
2003-01-2532
Two portable, collapsible water storage containers were developed to enable water logistics and storage on ISS. The first is a new version of the 44-liter Contingency Water Container (CWC) originally developed for the Shuttle Program. The new CWC uses a thicker Combitherm® film, VPCXX 140, as the bladder material. The second is a multipurpose 10-liter vessel, known as the Payload Water Reservoir (PWR), with a Teflon® bladder. Both of these collapsible vessels have Nomex® outer restraints for structural support, allowing them to withstand pressurization and resist puncture. The results of material longevity tests, the design and development of the two containers are briefly reported, and current and future water, wastewater, coolant and experiment fluid storage applications for the ISS are described.
Technical Paper

Anatomical Modeling Considerations for Calculating Organ Exposures in Space

2000-07-10
2000-01-2412
Typical calculations of radiation exposures in space approximate the composition of the human body by a single material, typically Aluminum or water. A further approximation is made with regard to body size by using a single anatomical model to represent people of all sizes. A comparison of calculations of organ dose and dose-equivalent is presented. Calculations are first performed approximating body materials by water equivalent thickness', and then using a more accurate representation of materials present in the body. In each case of material representation, a further comparison is presented of calculations performed modeling people of different sizes.
Technical Paper

A Portable Unit to Measure Metabolic Rate during Shirtsleeve and Suited EVA Tests

2008-06-29
2008-01-2110
This paper presents a new portable metabolic device (PUMA-Portable Unit for Metabolic Analysis) developed at the NASA Glenn Research Center. PUMA is a battery-operated, wearable unit to measure metabolic rate (minute ventilation, oxygen up-take, carbon dioxide output and heart rate) in a clinical setting, in the field or in remote, extreme environments. The critical sensors in PUMA are located close to the mouth and sampled at 10 Hz to allow intra-breath measurements. PUMA transmits metabolic data wirelessly to a remote computer for data analysis and storage. In addition to it's primary function as a portable metabolic measurement device, the PUMA sensors can also be easily adapted to other applications, including future EVA suits where they could measure metabolic rate for a suited crew member. The first section of the paper discusses the specific technologies and innovations of PUMA.
X