Refine Your Search

Topic

Author

Search Results

Technical Paper

i-Cool Integration of Phase Change Materials into Metropolitan Car Concepts to Control the Cabin Temperature

2014-04-28
2014-28-0044
This paper presents the modeling results of an innovative i-cool system for controlling the cabin temperature of a standalone car facing the solar energy from the sun. Project work indentifies the best possible phase change material (PCM) to be used for i-cool system is n-Heneicosane which shows maximum total heat flux is 44189 W/m2. From all the PCMs n-Heneicosane, n-Eicosane and n-Nonadecane that were shortlisted in selection criteria shows 600 sec to achieve inner surface temperature equal to the outer surface for a metropolitan car. While without use of PCM, the metropolitan car takes 320 sec & total maximum heat flux is 32900 W/m2. The final selection of n-Heneicosane shows 34.25% efficiency over conventional car.
Technical Paper

The Generation of Cyclic Blockloading Test Profiles from Rainflow Histograms

1992-02-01
920664
A numerical method for generating a blockloading profile from a rainflow histogram is described. Unlike previous techniques, this method produces a blockloading profile which, when rainflow-counted, yields a rainflow histogram identical to the original. When implemented with modern data acquisition and signal-processing techniques, this generation method provides a means of developing blockloading test profiles which are correlated with actual service data. This key benefit elevates existing simple testing systems as useful and productive tools despite the emrgence of more complex testing systems.
Technical Paper

The Development of Tools for the Automatic Extraction of Desired Information from Large Amounts of Engineering Data

2001-03-05
2001-01-0707
Product development processes generate large quantities of experimental and analytical data. The data evaluation process is usually quite lengthy since the data needs to be extracted from a large number of individual output files and arranged in suitable formats before they can be compared. When the data quantity grows extremely large, manual extraction cannot be done in a limited timeframe. This paper describes a set of tools developed by MTS engineers to automatically extract the desired information from a large number of files and perform data post-processing. The tools greatly improved both speed and accuracy of the evaluation process during the development of a sound quality-based end-of-line inspection system for seat tracks [1]. It allowed engineers to quickly gather a comprehensive understanding of the relative importance of individual design parameters and of their correlation to the subjective perception of the sound quality of the seat track.
Technical Paper

Study of Nano Particle Emissions and It's Metrices for Diesel 4-Wheelers Evaluation of Vehicle Categories, Models and Model Years at Different Fuel Levels

2011-01-19
2011-26-0036
In recent studies, the health implications of ultra fine particle emissions from vehicles have been investigated in a number of international studies. The adverse health effects are not only dependent on total particulate mass but also on other attributes including size, number and surface area of the particles. These ultra fine particles cause more adverse effect than larger particles. With this need UNECE GRPE had launched a Particulate Measurement Program (PMP) to formulate the regulation to control both particulate mass and number of ultra fine particles. These new regulations are applicable to the diesel and gasoline direct injection passenger cars and heavy duty engines of Euro-V/VI technology. However, at present the other vehicle categories and alternate fuels are not been covered. Limited experiments have been carried-out on the in-use vehicles which are with old technologies.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
Technical Paper

Racing Motorcycle Design Process Using Physical and Virtual Testing Methods

2000-11-13
2000-01-3576
Recently, the use of laboratory-based physical prototype testing as well as the design of virtual models and virtual test equipment has accelerated the pace and quality of racing vehicle development. In particular, the combined use of both virtual and physical testing, when correlated to racetrack improvements, yields a powerful development tool(1), (2),(3). In this study, we applied these techniques from the first stages of the design of a unique Grand Prix racing motorcycle. First, a wire-frame CAD model, then a parametric CAD solid model of the motorcycle was created after preliminary calculations specified the approximate design of structural elements. Subsequently, a virtual dynamic model was created and subjected to a variety of inputs, including sine sweeps, shaped white noise and simulated road time-histories. Loads and other dynamic responses were measured on the virtual model, so that it's design could then be optimized to yield acceptable performance and durability.
Technical Paper

Optimizing Load Transducer Design Using Computer-Based Analytical Tools

2001-03-05
2001-01-0787
Rapid development of advanced multi-axial load transducer systems now requires the use of computer-based analytical tools to assist the development engineer optimize the design to meet often-conflicting design targets. This paper presents a case study based on the development of a wheel force load transducer to meet a challenging set of performance goals including accuracy, repeatability, durability and insensitivity to the external environment. The paper also highlights the limitations of some of the current analytical tools when used for load transducer design, and how these limitations can be overcome by cost-effective combinations of analytical performance prediction and physical test confirmation.
Technical Paper

Numerical and Experimental Analysis of Intake Flow Structure and Swirl Optimization Strategies in Four-Valve Off-Highway Diesel Engine

2019-01-09
2019-26-0042
Future emission limits for off-highway application engines need advanced power train solutions to meet stringent emissions legislation, whilst meeting customer requirements and minimizing engineering costs. DI diesel engines with four valves per cylinder are widely used in off- highway applications because of the fundamental advantages of higher volumetric efficiency, lower pumping loss, symmetric fuel spray & distribution in combination with the symmetric air motion which can give nearly optimal mixture formation and combustion process. As a result, the fuel consumption, smoke levels and exhaust emissions can be considerably reduced. In particular, the four-valve technology, coupled with mechanical low pressure and electronic high pressure fuel delivery systems set different requirements for inlet port performance. In the present paper four valve intake port design strategies are analysed for off highway engine using mechanical fuel injection systems.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
Technical Paper

Monitoring of In-use Vehicle Emissions in India

1998-05-04
981379
The exhaust emission legislation for automotive vehicles came into effect in India from 1991. Since then, the exhaust mass emission certification tests are conducted on a prototype vehicle for emission compliance before commencing commercial production. The exhaust emission norms are reviewed and tightened after every five years. This should lead to a better emission control system in new vehicles. But the old vehicles which are designed prior to emission control era continue to emit heavily due to their inherent design and condition. The problem of in use vehicle emissions will be on the rise with the low scrappage rate of old vehicles in India. The impact of implementing tighter norms for new vehicles on ambient air quality can be felt only after a period of about 10 years. To have an effective improvement in ambient air quality levels, it is necessary to identify the gross polluters and retune them for bringing their emissions to an acceptable level.
Technical Paper

Methodology Development for External Aerodynamic Evaluation of a Bus and Its Impact on Fuel Economy along with Experimental Validation

2019-01-09
2019-26-0294
The objective of this study is to develop, demonstrate and validate the methodology of external aerodynamic analysis of a State Road Transport bus for prediction of drag coefficient and its impact on fuel consumption with experimental validation. It has been verified that vehicle consumes around 40% of the available engine power to overcome the air drag. This gives us a huge scope to study the effect of aerodynamic drag. Baseline model of State Road Transport Bus was evaluated for estimating fuel consumption using Computational Fluid dynamics (CFD) methodology. The CFD results were validated with the experimental data with less than 10% deviation. Bus design was optimized with an objective of reducing the fuel consumption with parameters like angle of windshield, rounding and tapering corners and rear draft angle. Optimized bus design is also ensured to meet functional specifications as per AIS052.
Technical Paper

Method for Prediction of Coffin Manson Parameters from Monotonic Tensile Property for Aluminium 6XXX Series Alloy to Predict Fatigue Life

2019-01-09
2019-26-0314
Light weighting is significant in for automotive industry as it helps in less fuel consumption and to achieve better performance. Aluminium is a candidate material for light weighting. To design a component made of aluminium material, it is necessary to understand the fatigue performance of the material. In this paper, a study is carried out to understand the fatigue performance of aluminium 6xxx series alloys at an early stage of design without carrying out comprehensive fatigue testing. Coffin Manson Parameters are used to predict fatigue life. This research focusses on determining the gaps in existing models for aluminium alloys by carrying out comprehensive review of various models developed for 6xxx series which uses monotonic tensile data. Two models are developed and the predicted fatigue properties for this class of material are further compared with experimental fatigue, monotonic data and literature.
Technical Paper

Literature Review and Simulation of Dual Fuel Diesel-CNG Engines

2011-01-19
2011-26-0001
Dual fuel operating strategy offers great opportunity to reduce emissions like particulate matter and NOx from compression ignition engine and use of clearer fuels like natural gas. Dual-fuel engines have number of potential advantages like fuel flexibility, lower emissions, higher compression ratio, better efficiency and easy conversion of existing diesel engines without major hardware modifications. In view of energy depletion and environmental pollution, dual-fuel technology has caught attention of researchers. It is an ecological and efficient combustion technology. This paper summarizes a review of recent research on dual-fuel technology and future scope of research. Paper also throws light on present limitations and drawbacks of dual-fuel engines and proposed methods to overcome these drawbacks. A parametric study of different engine-operating variables affecting performance of diesel-CNG dual-fuel engines vis-à-vis base diesel operation is also summarized here.
Technical Paper

LEAN Techniques for Effective, Efficient and Secure Information Processing in Automotive Homologation

2019-01-09
2019-26-0335
It is an established fact that virtual knowledge based engineering has revolutionized R & D activities by streamlining processes, ensuring productivity and accuracy. This has resulted in freeing up time for quality interpretational work and decision making for engineering the best of products. Subsequently, homologation is a mandatory requisite activity for product signoff. It certifies the quality of the product and is an important factor in giving the product an authenticity for sale in the market. Homologation entails compliance to regulations existing in form of well-established standards which elaborate systematic and detailed guidelines on conducting physical testing for automotive systems, sub-systems or components for specific vehicle types.
Technical Paper

Integration of Real and Virtual Tools for Suspension Development

2011-01-19
2011-26-0115
Suspension development is one of the key steps in a complete vehicle development program. Computer simulation and analysis tools such as Multi Body Dynamics (MBD) simulation are used to refine initial concept and suspension parameters. Later on when a physical prototype is available the suspension system can be experimentally optimized at vehicle level. In this paper a new methodology is proposed which integrates virtual and experimental tools so that design, development and validation of the suspension system is carried out in the early phase of the vehicle development cycle with actual suspension components and without the need of a vehicle prototype. With this new approach, the design of any critical suspension components such as dampers can be optimized at the vehicle level. The new approach consists of combining the actual physical components on loading rig in closed loop with vehicle dynamic model running in real time.
Technical Paper

Influence of Rake Angle and Cutting Speed on Residual Stresses Developed in Cutting Tool during Turning Operation

2014-04-28
2014-28-0014
In this work, the effect of tool rake angle and cutting speed on residual stresses of tool was studied, the rake angles of 0°, 5°, 10°, 15°, and 20° and a constant clearance (Relief angle) of 8° were used to turn bright mild steel on the lathe machine, A total of 15 experiments were carried out with three different cutting speeds (37.69, 59.37, 94.24 m/min) for each rake angle, keeping the feed rate and depth of cut constant. During the experimentation, the residual stresses were measured using an x-ray diffractiometer. This is all in order to explore the energy savings opportunities during regrinding of tools, useful production time and energy is being wasted due to regrinding or re-sharpening of tools when cutting tools got worn or blunt, selection of the rake angle which generate the optimum residual stresses in the tool, goes a long way in saving these time and energy.
Technical Paper

Heat-Treatment Process Optimization Using Dilatometry Technique and Simulation Tools

2019-01-09
2019-26-0242
Any metal component undergoes various treatments to get desired shape and desired properties. Some of the important properties are strength, hardness, % elongation etc. which comes under mechanical properties. These properties can be easily achieved through heat-treatment process. Typical example of heat-treatment processes are hardening and tempering in case of steel and aging process in case of aluminium alloys. Some of the new emerging materials viz. micro alloy steel does not require any hardening and tempering if cooling rate is maintained. Heat-treatment cycle depends on material grade and its alloying elements. A heat-treatment cycle for any grade is generally fixed based on conventional methods but they are not optimized. The need of hour is to optimize the heat-treatment cycle to improve productivity and energy consumption. Dilatometer is used to optimize heat-treatment cycle on sample level whereas simulation tools can be used for component level.
Technical Paper

Experimental Investigations on Lean Burn Spark Ignition Engine Using Methanol - Gasoline Blends

2019-01-09
2019-26-0088
The present study discusses the effects of engine combustion, performance and emission features of methanol-gasoline blend fired lean burn Spark Ignition (SI) engine. Performance features such as Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), tail pipe emissions namely Hydrocarbon (HC), Carbon Monoxide (CO), Nitrogen Oxide (NO), Carbon di Oxide (CO2) and combustion characteristics viz. in-cylinder pressure, Heat Release Rate (HRR), Cumulative Heat Release (CHR) and variation of mean effective pressure were measured and compared with that of neat gasoline. Experiments were conducted on a modified sole cylinder four-stroke compression engine (Kirloskar TAF1) to operate as SI engine with a compression ratio of 10.5:1. A new manifold injection system and ignition system were developed by replacing the fuel injection pump and injector.
Technical Paper

Experimental Investigation of Combustion Characteristics in a Heavy Duty Natural Gas Engine under Light Load with Methanol Addition

2017-10-08
2017-01-2268
Engines fuelled with Liquefied natural gas (LNG) have been widely used in the heavy-duty vehicles. However, they suffer from poor combustion performance and flame instability under fuel-lean condition. In this work, experiments were performed on a turbo-charged, spark-ignition engine fuelled with natural gas (NG) and methanol. The combustion characteristics such as in-cylinder pressure, heat release rate (HRR), burned mass fraction (BMF), ringing/knock intensity (RI), ignition delay, centroid of HRR, and coefficient of variation (COV) of indicated mean effective pressure (IMEP) were analyzed under light load (brake mean effective pressure=0.3876 MPa) with different methanol substitution rates (MSR=0%, 16%, 34%, 46%). The experimental results showed that combustion phase advanced with the increase in MSR due to faster burning velocity of methanol. Knock only occurred at MSR=46%, 2000 rpm.
Technical Paper

Digitally Controlled Servo-Hydraulic Crash Simulator

2000-03-06
2000-01-0048
The value of crash simulation has long been recognized by carmakers as an essential tool for vehicle development and certification programs. Driven by the need to minimize time-to-market for new models, cost reduction, and by consumer demand for safer cars and trucks, the industry is moving to newer technologies in crash simulation. Crash simulation provides an inexpensive means to quickly simulate the effects of a barrier crash by reproducing its basic elements - acceleration, velocity and displacement - in a nondestructive test. Crash event timing and accuracy of reproduction are critical performance factors. This paper describes the unique features and capabilities offered by a new generation of crash simulators.
X