Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Motorcycle Engine Development System by Using a Test Bed with Simulation Technology

With the hope of efficient and sophisticated motorcycle engine development, an engine test bed that can simulate vehicle running conditions using an ultra-low inertia motor and high response load control system was constructed, and was applied to the development of engines. By combining an exhaust gas analyzer, an exhaust gas constant volume sampler (CVS), and a data processing system, mass emissions could be measured in various test cycles. This system's advantages for data repeatability and test efficiency compared with a chassis test using a vehicle were confirmed. An acceleration test was conducted to assess running performance, and good agreement with actual driving values was confirmed. In addition, by measuring and evaluating engine response to throttle manipulation, it was possible to evaluate driveability on the test bed. These test findings indicate that this test bed can simulate vehicle driving tests with the engine only and will be a useful tool in engine development.
Technical Paper

Effects on Fuel Economy and NOx Emission Using Stratified Charge and EGR System for a Single Cylinder Motorcycle Engine

In this study, lean combustion concept was investigated to realize better Fuel Economy (FE) on a single cylinder motorcycle engine. A low-pressure direct injection (DI) system was applied to realize lean stratified combustion concept with good combustion stability. In addition, Exhaust Gas Recirculation (EGR) system applicable to small motorcycle engines was used to attain FE improvement and NOx reduction. EGR gas temperature and EGR return position were focused on and effects on FE and NOx were investigated. Computational Fluid Dynamics (CFD) was used to reveal EGR distribution and air motion in both the intake port and the cylinder. As a result, the influence of the stratified charge, EGR temperature and EGR return position on FE and NOx were explained quantitatively. These techniques were effective in reducing NOx and improving FE for a single cylinder motorcycle engine.