Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of CVT Shift Dynamic Simulation Model with Elastic Rubber V-Belt

2011-11-08
2011-32-0518
This paper presents a practical simulation model of the rubber V-belt CVT which is widely used as a low cost driveline element for small displacement motorcycles. The characteristic of this CVT is determined by the axial force balance between driver and driven pulleys, and the elastic force of a rubber V-belt. Because these axial and elastic forces are calculated by the kinematic and FEM analysis, a large-scale simulation model which costs long execution time for the calculation is needed to estimate the characteristic of CVT. This calculation uses the one-dimensional simulation model built up with MATLAB and SIMULINK environment, so that it was possible to get the calculation result with relatively low execution time. The elastic deformation of the rubber V-Belt was calculated by a simple spring model which was verified by experiments and FEM.
Journal Article

Development of New Concept Two-Wheel Steering System for Motorcycles

2013-10-15
2013-32-9106
This paper describes the development of a new concept two-wheel steering system for realizing motorcycle motion control. By considering the whole of the main frame as the rear-wheel steering axis, it was possible to move the rear-wheel steering system from the conventional installation position at the rear arm to the head pipe. As a result, the developed two-wheel steering system is both lightweight and compact. This two-wheel steering system was installed in a motorcycle, and starting and stopping tests were carried out with two people riding on the motorcycle. The test results confirmed that the two-wheel steering system is capable of changing the motion characteristics of the motorcycle in actual riding. Furthermore, by calculating the equivalent wheel alignment of this system, this paper also theoretically demonstrates that these changes in motion characteristics are caused by changes in caster and trail.
Technical Paper

Development of a Piston Secondary Motion Analysis Program with Elastically Deformable Piston Skirt

1999-09-28
1999-01-3303
An original multi-body dynamics simulation program for reciprocating engine system with elastically deformable piston skirt was developed in order to understand and examine the secondary motion of piston. This program uses specialized equations of motion using only the rotational degree of freedom of each components taking the valiation of rotating speed of crank into account. In order to validate the practical use of this program, the calculations were compared with the measurements on the piston motion of a two-stroke engine for motorcycles and a four-stroke engine for automobiles, and good agreements were obtained between them.
X