Refine Your Search

Topic

Author

Search Results

Technical Paper

The Relationship Between Port Shape and Engine Performance for Two-Stroke Engines

1999-09-28
1999-01-3333
Measurement using a three-dimensional anemometric-tester was made for the gas flow inside the cylinder of a two-stroke engine while the shape of the transfer port was modified. The relationship between port shape and engine performance was investigated for various factors that characterize the flow in cylinder. In this paper, we focused mainly on two engine running conditions: the maximum output at 11750 rpm and the output at 10000 rpm. As a result, we found that the maximum output is most related to the tangential inclination angles of the main transfer port, and the inner vent radius of the main transfer duct.
Technical Paper

The Investigation of Mixture Formation and Combustion with Port Injection System by Visualization of Flame and Wall Film

2011-08-30
2011-01-1887
Mixture formation is one of the most important factors for the combustion in the spark ignition engine with port fuel injection. The relation between combustion and mixture quality, however, is not quantitatively well established. In this study, the connection of combustion and mixture formation was explored with various measurement techniques. Borescopes were used in order to investigate the flame propagation in the combustion chamber and behavior of spray and fuel film on the wall in the intake port. For the purpose of investigation on the effect of mixture formation, various port fuel injection systems and parameters were tested and compared: direction, timing, and size of droplet. An SI engine for small vehicle was used under condition of 4 000 rpm. The investigation by images obtained has shown that inhomogeneity of mixture causes low combustion stability, especially due to direct introduction of fuel droplets into the combustion chamber.
Journal Article

The Effect of Surface Morphology of Cylinder Bore Surface on Anti-Scuffing Property made by High Pressure Die-Casting Process using Hyper-Eutectic Al-Si Alloy

2013-10-15
2013-32-9046
A monolithic type aluminum (Al) cylinder made of hypereutectic Aluminum-Silicon alloy has been widely used for motorcycle applications. It has a lightweight structure and a superior cooling ability owing to its material property and surface finishing. Usually the cylinder bore surface of the monolithic type Al cylinder is finished by an etching process or a honing process in order to expose silicon (Si) particles from aluminum (Al) matrix for the improvement of the tribological properties. The morphology of the cylinder bore surface including the exposure of Si particles is supposed to make an important effect on its tribological properties, especially on the anti-scuffing property. In this research, the anti-scuffing property of three kinds of cylinder bore finishing, an etched surface, a Si exposure honed surface and a conventional plateau honed surface is evaluated with using a reciprocated type wear tester. The experimental results are analyzed by using Weibull analysis.
Technical Paper

The Control of the Primary Inertia Force and Moments Produced in Engines with Three Cylinders or Less

1968-02-01
680023
All the primary inertia forces and/or moments generated by engines having three cylinders or less are not normally in balance by themselves and thus may be a great source of vibration for the frame supporting the engine. If the mass distribution of the crankwebs is selected in a proper manner, it is possible to determine arbitrarily the directions and the length ratio of principal axes of ellipses, which are obtained as Lissajous diagrams of inertia force and moment. This method can be effectively applied to reduce vibration in the frames. In this paper the appropriate inertia force and moment ellipse equations are developed and the analysis is outlined for optimizing the engine balance. Also the fundamental properties of the linear vibration systems excited by the elliptical forces as well as some experimental examples of elliptical excitation are detailed.
Technical Paper

Study of bonded valve-seat system (BVS)

2000-06-12
2000-05-0144
The Bonded Valve Seat System is the latest technology to realize drastic reduction in valve temperature in SI engines characterized by the good thermal conductivity of extremely thin valve seats bonded directly on the aluminum cylinder head. A unique and highly rationalized resistance bonding technique was developed to maintain adequate bonding strength and positioning precision in a short bonding period of around one second. Engineering data on optimization of bonding-section geometry, valve seat material and the surface treatment and bonding parameters were presented and discussed regarding the mechanism. The geometry of the bonding section of the cylinder head was optimized by FEM analysis so that the aluminum material should deform to embed the valve seat ring with the action of expelling the surface contamination and the oxide film. The bonding facility was modified so that the electrode axis should move flexibly according to distortion of the cylinder head during bonding.
Technical Paper

Section Flow Improvement of Plasma Spray Cylinder in Outboard Motor

2013-10-15
2013-32-9029
The two-stroke engines were in the main stream of the outboard motors, but they have been replaced with the four-stroke counterparts reflecting the environmental protection movement in recent years. However, the replacement with four-stroke engines involves increased number of components and additional displacement, and the outboard motors tend to be larger and heavier. This represents an issue, since the maneuverability of the boat is degraded due to the inappropriate weight distribution on the boat. Yamaha outboard motors F300B and VF250A, of which the production started in the year 2009, are equipped with four-stroke engines, and yet achieved the light weight equivalent to their two-stroke counterparts. The production volume of these models reached 20,000 units.
Technical Paper

Reduction of Disagreeable Idle Sound in Two-Stroke Engines

1993-03-01
930981
A periodic impulsive sound at idle is occasionally described as ‘disagreeable’ in two-stroke engines. The relation between combustion conditions, piston vibrations, and the disagreeable sound is analyzed to clarify the phenomena. Some means to alleviate disagreeable sound are then proposed through stabilized combustion, high rigidity sound transfer systems, and refined skirt profiles. Experimental results are shown for the effects on main three factors evaluating disagreeable sound-loudness, impulsiveness, and frequency characteristics. In addition, piston behavior is measured, and the relation between piston motion and disagreeable sound is discussed in this paper.
Journal Article

Reduced-Order Modeling of Intake Air Dynamics in Single-Cylinder Four-Stroke Engine

2013-10-15
2013-32-9041
This study deals with reduced-order modeling of intake air dynamics in single-cylinder four-stroke naturally-aspirated spark-ignited engines without surge tanks. It provides an approximate calculation method for embedded micro computers to estimate intake manifold pressures in real time. The calculation method is also applicable to multi-cylinder engines with individual throttle bodies since the engines can be equated with parallelization of the single-cylinder engines. In this paper, we illustrate the intake air dynamics, describe a method to estimate the intake manifold pressures, and show experimental results of the method.
Technical Paper

Prototype of Centralized Control System Utilizing Optical Communication for Motorcycles

1986-02-01
860570
A centralized control system utilizing optical communication has been developed. Except for the ignition system, almost all electrical functions are under the centralized control. As a method of simplifying wire harness, the time division multiplex communication system using optical communication is adopted. As a result, this new system has made it possible to reduce the number of wires in wire harness from 174 to 123, that of connectors from 60 to 50, and the weight of the wire harness from 1,600 g to 1,350 g. In addition, this system has allowed to reduce the control units (relays) from 11 to 2 (excluding the ignition system).
Technical Paper

Practical Use of the Engine Testing Dyno with the Vehicle Simulation for the MotoGP Race Engine Development

2007-10-30
2007-32-0043
MotoGP is the pinnacle of motorcycle racing, with the world's top riders racing 800cc prototype machines at leading venues around the world. The riders compete against each other to win the title and show their superiority. The manufacturers have improved the engines every year to gain high power with low-fuel consumption. The percentage of the duration in fully open throttle is less than 20% of the race, but the partial throttle is used as much as 80%. Moreover, when the rider accelerates the machine, the front tire is easy to be lifted from the ground. In the middle of corner, the rider cannot open the throttle fully because of the tire slip. Therefore, it is the most important factor to appropriately control a throttle in the partial area. The Drive-By-Wire (DBW) system is one of the solutions for the force control. The vehicle simulation in the engine dyno test helped efficiently to evaluate the DBW.
Technical Paper

Piston Friction Losses in High-Speed Engines

1991-11-01
911230
The purpose of this paper is to investigate the effect of the piston shape and weight on the friction losses. The motoring test was conducted on pistons with various shapes, rigidities, and weights at 3000-16000 rpm. The test results suggested that the piston friction loss would be abruptly increased mainly because of the increase in the skirt friction caused by the change of the piston attitude. Then, the piston behavioral simulation was conducted using a two-dimensional rigid model in consideration of the skirt rigidity, which proved the above suggestion. This paper consists of the paper presented at 1990 JSAE Autumn Convention and the results of the investigation we conducted based on the calculation of piston behavioral simulation.
Technical Paper

Optimization of Multi-Valve Four Cycle Engine Design-The Benefit of Five-Valve Technology

1986-02-01
860032
THE MULTI-VALVE FOUR STROKE CYCLE engine design trend is Coward increased engine power and higher fuel efficiency. While a four-valve system is the most common direction, problems occur when the valve area is widened by increasing the cylinder bore for a higher engine output. The layout of four larger valves causes the combustion chamber shape to flatten and the combustion time period to increase. In pursuit of the optimum multi-valve engine we have studied four, five, six and seven-valve per cylinder design. Performance targets and design constraints led us toward the successful five-valve engine technology. This technology develops high engine torque and efficient combustion over a wide range of engine speeds.
Technical Paper

On the Theory of Orthogonal Engine Mount System and Its Application to Motorcycles

1983-02-01
830088
By orthogonalizing the primary inertia moment vector produced by an engine with many engine vectors, a new engine mounting method called “the orthogonal engine mount system” was designed. This paper explains its theoretical background. In addition, a motorcycle with a two-cylinder engine incorporating this system was analyzed by means of modal analysis and building block approach techniques to determine the effectiveness of the orthogonal engine mount system.
Technical Paper

Motorcycle Engine Development System by Using a Test Bed with Simulation Technology

2006-11-13
2006-32-0103
With the hope of efficient and sophisticated motorcycle engine development, an engine test bed that can simulate vehicle running conditions using an ultra-low inertia motor and high response load control system was constructed, and was applied to the development of engines. By combining an exhaust gas analyzer, an exhaust gas constant volume sampler (CVS), and a data processing system, mass emissions could be measured in various test cycles. This system's advantages for data repeatability and test efficiency compared with a chassis test using a vehicle were confirmed. An acceleration test was conducted to assess running performance, and good agreement with actual driving values was confirmed. In addition, by measuring and evaluating engine response to throttle manipulation, it was possible to evaluate driveability on the test bed. These test findings indicate that this test bed can simulate vehicle driving tests with the engine only and will be a useful tool in engine development.
Technical Paper

Light Body for Small Vehicles Using High-Quality Die-Casting Component

2003-10-27
2003-01-2869
A high-quality die-casting technology has been developed for lightweight aluminum frame structures that produces high-strength aluminum parts that are also weldable. This new technology has been used in casting frames for motorcycles and snowmobiles and has enabled improved frame designs with far fewer component parts than was possible before. This die-casting technology also results in a significant reduction in energy consumption during the manufacturing process.
Technical Paper

L.D.V. Measurements of Pipe Flows in a Small-Two-Cycle Spark-lgnition Engine

1984-02-01
840425
A laser Doppler velocimeter is used to measure in real time the velocities of pipe flows in a crankcase-scavenged small two-cycle engine with piston and reed valves. Consequently the optical windows in each pipe must be exchanged instantly by using rotary window systems. The flows in both the inlet and exhaust pipes show different patterns in the motored and firing conditions, but the flows in the scavenging pipe are in a similar pattern regardless of the operating conditions.
Technical Paper

Influence of Injection and Flame Propagation on Combustion in Motorcycle Engine - Investigation by Visualization Technique

2011-11-08
2011-32-0566
This paper reports visualization of behavior of spray, wall film, and initial flame propagation in an SI engine with port fuel injection system for motorcycle in order to directly investigate their influences on combustion and relations among them. Borescopes were used to visualize the flame propagation in the combustion chamber and wall film in the intake port. Various injection systems and injection parameters were tested: injection direction, timing, and size of droplets to investigate the effect of mixture formation. It is concluded that combustion stability under low load condition is greatly influenced by mixture inhomogeneity in the combustion chamber whose evidence is the luminous emission. It is caused by direct induction of considerable amount of liquid fuel with large size of droplets into combustion chamber or too inhomogeneous mixture in the intake port.
Technical Paper

Improving the Fuel Consumption of Small Motorcycle Engine with YMJET-FI

2009-11-03
2009-32-0049
A construction of the technology concerning fuel consumption improvement is an important problem not only for the four-wheeled vehicle but also for the motorcycle in recent years when petroleum resources are depleted rapidly. Yamaha originally developed a new fuel injection system (YMJET-FI) and applied the system to a single cylinder, water-cooled and small-displacement engine. In this paper, we would introduce the results of improving the fuel economy with keeping high performance. Improvements were noted in three matters, namely, in the lower load range, 1.Strengthening of in-cylinder flow, 2.Atomization of fuel spray, and 3.Reduction of wall film quantity.
Journal Article

Improvement of the Startability with Reverse Stroke Intake Devices for a Motorcycle Engine

2014-11-11
2014-32-0107
This paper proposes a novel engine starter system composed of a small-power electric motor and a simple mechanical valve train. The system makes it possible to design more efficient starters than conventional systems, and it is especially effective to restart engines equipped with idling stop systems. Recently, several idling stop systems, having intelligent start-up functions and highly-efficient generate capabilities have been proposed for motorcycles. One of challenges of the idling stop systems is the downsizing of electric motors for starting-up. However, there are many limitations to downsize the electric motors in the conventional idling stop systems, since the systems utilize the forward-rotational torque of the electric motors to compress the air-fuel mixture gas in the cylinders. Our studies exceeded the limitations of downsizing the electric motors by mainly using the engine combustion energy instead of the electric energy to go over the first compression top dead center.
Technical Paper

Fuel Injection System for Small Motorcycles

2003-09-15
2003-32-0084
Attempts have been made to develop an electronically controlled fuel injection system that is ideal for small motorcycles, cost-efficient, compact, and electric power-saving while maintaining accuracy. For reducing the number of sensors and cost, highly accurate methods have been developed for the measurement of intake air mass, detection of acceleration, distinction of engine stroke, and estimation of atmospheric pressure without using a throttle position sensor, cam timing sensor, and barometric sensor in such a manner as to carry out sampling with the intake manifold pressure of single-cylinder engines synchronizing with the crank angle. For compactness and electric power saving, an injector and in-tank fuel pump module have been developed for small motorcycles.
X