Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Standard

Runway Condition Monitoring Systems

2022-04-13
WIP
AIR6697
This report will document Runway Condition Monitoring systems that provide information intended to reduce or eliminate aircraft runway excursions or overruns that may occur as a result of poor runway conditions.
Standard

Overview of Aircraft Landing Gear Shimmy Analysis Methods

2021-06-10
CURRENT
AIR6280
This SAE Aerospace Information Report (AIR) provides an overview of the tire properties, strut properties, damper properties, and other landing gear mechanical properties that contribute to shimmy stability and are required for shimmy analysis. A variety of analysis techniques and assumptions are presented.
Standard

Landing Gear System Development Plan

2021-02-11
CURRENT
ARP1598C
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial/military, fixed wing, and rotary wing air vehicles.
Standard

Landing Gear System Development Plan

2023-05-31
WIP
ARP1598D
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial/military, fixed wing, and rotary wing air vehicles.
Standard

Landing Gear Storage

2021-04-23
CURRENT
ARP5936
This document categorizes the different types of storage requirements, either on the aircraft or new unused or overhauled on the shelf, for aircraft landing gears/components. Recommendations and examples of proper landing gear storage are outlined. Reclamation recommendations are provided for aircraft landing gear returning from long-term storage.
Standard

Landing Gear Stability

2023-04-17
WIP
AIR4894A
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
Standard

Landing Gear Based Weight and Balance Systems

2019-04-18
WIP
AIR6941
This document outlines historical systems which have used the landing gear as a sensor or installation point for full aircraft weight and balance systems. A number of systems have been developed, installed, certified, and placed in service but few systems remain in regular use. The document will capture the history of these systems, reasons (where known) for their withdrawal from service, and lessons learned.
Standard

Environmentally Compliant Processes for Landing Gear

2013-10-25
HISTORICAL
AIR5479A
This SAE Aerospace Information Report (AIR) describes the performance of platings and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. Available data are presented for various standard tests in order to compare the replacement candidates. Conclusions are made as to the best performer(s) for each test section presented. These conclusions are not to be regarded as recommendations for or against any of the candidates. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both original equipment manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

Environmentally Compliant Processes for Landing Gear

2002-02-15
HISTORICAL
AIR5479
This SAE Aerospace Information Report (AIR) describes the performance of platings and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. Available data are presented for various standard tests in order to compare the replacement candidates. Conclusions are made as to the best performer(s) for each test section presented. These conclusions are not to be regarded as recommendations for or against any of the candidates. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both original equipment manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

Effects of Extremely Cold Temperature on Landing Gear Operation

2022-03-29
CURRENT
AIR6411
This SAE Aerospace Information Report (AIR) provides information on landing gear operation in cold temperature environments. It covers all operational aspects during ground handling, takeoff, and landing. It includes effects on tires, brakes, shock struts, seals, and actuators.
Standard

Aircraft Ground Flotation Analysis Methods

2016-04-10
HISTORICAL
ARP1821A
This SAE Aerospace Recommended Practice (ARP) includes recommended ground flotation analysis methods for both paved and unpaved airfields.
Standard

Aircraft Ground Flotation Analysis Methods

2016-12-01
HISTORICAL
ARP1821B
This SAE Aerospace Recommended Practice (ARP) includes recommended ground flotation analysis methods for both paved and unpaved airfields with application to both commercial and military aircraft.
Standard

A Guide for the Damaging Effects of Tire and Wheel Failures

2022-07-06
CURRENT
AIR5699A
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years, and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
X