Refine Your Search

Topic

Search Results

Standard

Use of HVOF Thermal Spray Coatings for Hard Chrome Replacement in Landing Gear Applications

2007-02-22
CURRENT
ARP5935
Electrolytically deposited chrome plate is the current standard surface treatment for landing gear component interface surfaces that require good wear resistance and corrosion protection. Chrome plated components are typically plagued by a slight debit in fatigue performance, detrimental mud cracking surface pattern, susceptibility to scoring, wear, and seal leakage. In addition, recent changes in environmental compliance standards place further restrictions on the use of electrolytically deposited chromium. Some commercial applications have already eliminated the use of chrome plate on current and future products. As a result, a substitute for electrolytically deposited chrome plate has been sought for several years. High Velocity Oxygenated Fuel (HVOF) thermal spray coatings have been developed to the point where they are being implemented as an alternative to hard chrome plate on high strength low alloy steels for external surfaces on landing gear applications.
Standard

Steering Effect of Tilted, Free-Swiveling Nose Gears

1991-02-27
CURRENT
AIR4358
This Aerospace Information Report (AIR) considers the origin of cornering forces generated by tilted, free-swiveling nose gears; the effect of various landing gear parameters on the measured cornering forces; and a method of towing aircraft to measure the resulting steering forces.
Standard

SKID CONTROL PERFORMANCE

1991-10-31
HISTORICAL
ARP862A
This Aerospace Recommended Practice (ARP) provides recommended methods for measuring performance of skid control systems. It includes test items and equipment.
Standard

Rotorcraft: Application of Existing Aircraft Designed Tires, Wheels and Brakes

2010-01-06
CURRENT
ARP5632
This document covers recommendations for the application of existing qualified and approved in-service fixed wing aircraft tires, wheels and brakes to military and commercial rotorcraft. NOTE: This document does not address the use of radial tires due to insufficient data to support their approved use on rotorcraft, see paragraph 4.3.14 for specific impact on ground resonance.
Standard

Recommended Practice for Measurement of Static Mechanical Stiffness Properties of Aircraft Tires

2002-02-28
CURRENT
AIR1380B
The static mechanical stiffness properties of aircraft tires are fundamental to any computation of wheel and landing gear shimmy characteristics, and are important guides in anti-skid system and aircraft wheel design. While the mechanical stiffness properties of aircraft tires are frequency sensitive, the static or low frequency values are important because they are the ones most easily obtained by laboratory testing and are most commonly found in literature. The following recommended methods for measurement of such properties are believed to represent practices which will give reliable and repeatable measurements, either at one facility or among different facilities, using equipment which is commonly available in most tire testing installations.
Standard

RECOMMENDED PRACTICE FOR MEASUREMENT OF STATIC MECHANICAL STIFFNESS PROPERTIES OF AIRCRAFT TIRES

1997-01-01
HISTORICAL
AIR1380A
The static mechanical stiffness properties of aircraft tires are fundamental to any computation of wheel and landing gear shimmy characteristics, and are important guides in anti-skid system and aircraft wheel design. While the mechanical stiffness properties of aircraft tires are frequency sensitive, the static or low frequency values are important because they are the ones most easily obtained by laboratory testing and are most commonly found in literature. The following recommended methods for measurement of such properties are believed to represent practices which will give reliable and repeatable measurements, either at one facility or among different facilities, using equipment which is commonly available in most tire testing installations.
Standard

Landing Gear Systems - Endurance Scatter Factor

2010-08-16
WIP
AIR6452
This information report will provide the reader with the thought processes and rationales employed by OEM's and gear manufacturers when specifying the scatter factor to apply to landing gear system components for endurance qualification testing.
Standard

Landing Gear Structural Health Monitoring

2019-05-23
CURRENT
AIR6168A
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber (servicing), opportunities for corrosion detection, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. Landing gear tire condition and tire pressure monitoring are detailed in ARP6225, AIR4830, and ARP6137, respectively. Aircraft Brake Temperature Monitoring Systems (BTMS) are detailed in AS1145.
Standard

Landing Gear Alignment

2009-05-05
CURRENT
AIR5556
The purpose of this Aerospace Information Report is to provide the industry with methodologies for measuring tire/wheel gear alignment and the range of acceptable alignment settings for various types of non-military landing gear. This AIR will focus on the general aviation, corporate, and regional aircraft landing gear but could have applicability to commercial aircraft.
Standard

Landing Gear (Engine Off) Taxi System

2015-12-27
CURRENT
AIR6246
This SAE Aerospace Information Report (AIR) will review new landing gear (engine off) taxi system technologies currently being developed by various companies and describe the basic design concepts and potential benefits and issues. This AIR will identify the associated systems that could be affected by this new technology. The document will review basic design and operational requirements, failure modes and identify system certification requirements that may need to be addressed. The technology is evolving as this paper is being written and the data present is currently up to date as of 2015.
Standard

Landing Area/Landing Gear Compatibility - A Brief History of SAE/Corps of Engineers Cooperation

1988-08-02
HISTORICAL
AIR4243
This document discusses the work done by the U.S. Army Corps of Engineers and the Waterways Experiment Station (WES) in support of SAE A-5 Committee activity on Aerospace Landing Gear Systems. It is an example of how seemingly unrelated disciplines can be combined effectively for the eventual benefit of the overall aircraft system, where that system includes the total airfield environment in which the aircraft must operate. In summary, this AIR documents the history of aircraft flotation analysis as it involves WES and the SAE.
Standard

Landing Area/Landing Gear Compatibility - A Brief History of SAE/Corps of Engineers Cooperation

2014-12-01
CURRENT
AIR4243A
This document discusses the work done by the U.S. Army Corps of Engineers and the Waterways Experiment Station (WES) in support of SAE A-5 Committee activity on Aerospace Landing Gear Systems. It is an example of how seemingly unrelated disciplines can be combined effectively for the eventual benefit of the overall aircraft system, where that system includes the total airfield environment in which the aircraft must operate. In summary, this AIR documents the history of aircraft flotation analysis as it involves WES and the SAE.
Standard

Inflator Assembly and Gage Elements, Pneumatic Pressure, Remote Control, Direct Reading

2002-02-13
HISTORICAL
AS85352
This specification covers a direct reading, remote control, pneumatic pressure inflator assembly, for use on aircraft tires and struts having pneumatic pressure requirements up to 600 psi. It includes pressure relief provisions to provide for safe inflation. Also included are dual chuck stem gages for measuring tire pressure.
Standard

Inflator Assembly and Gage Elements, Pneumatic Pressure, Remote Control, Direct Reading

2018-04-09
CURRENT
AS85352A
This specification covers a direct reading, remote control, pneumatic pressure inflator assembly, for use on aircraft tires and struts having pneumatic pressure requirements up to 600 psi. It includes pressure relief provisions to provide for safe inflation. Also included are dual chuck stem gages for measuring tire pressure.
Standard

Environmentally Compliant Processes for Landing Gear

2017-07-14
CURRENT
AIR5479B
This SAE Aerospace Information Report (AIR) describes the performance of plating’s and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both Original Equipment Manufacturer (OEM) hardware and overhaul of in-service landing gears.
X