Refine Your Search

Topic

Search Results

Technical Paper

VERT: Diesel Nano-Particulate Emissions: Properties and Reduction Strategies

1998-02-23
980539
Increasing concern, about the health risk due to solid aerosols from engine combustion, has provoked more stringent imission limits, for soot particles in the range of pulmonary intrusion, at critical work-places (e.g. tunnel sites, see Table 1). Within the scope of the joint European project VERT, these emissions were characterized and their effective curtailment through exhaust gas after-treatment investigated. Diesel engines, irrespective of design and operating point, emit solid particulates in the range of 100 nm, at concentrations above 10 million particulates per cm3. Engine tests showed that a drastic curtailment of pulmonary intruding particulates seems not feasible by further development of the engine combustion, nor by reformulation of fuels, nor by deployment of oxidation catalytic converters. Particulate traps, however, can curtail the total solid particulate count, in the fine particulate range 15-500 nm, by more than two orders of magnitude.
Technical Paper

VERT Particulate Trap Verification

2002-03-04
2002-01-0435
Particulate traps are mechanical devices for trapping soot, ash and mineral particles, to curtail emissions from Diesel engines. The filtration effectiveness of traps can be defined, independent of the pertinent engine, as a function of the particle size, space velocity and operating temperature. This method of assessment lowers cost of certifying traps for large-scale retrofitting projects [1,2]. VERT [3] is a joint project of several European environmental and occupational health agencies. The project established a trap-verification protocol that adapts industrial filtration standards [4] to include the influence of soot burden and trap regeneration phenomena. Moreover, it verifies possible catalytic effects from coating substrates and deposited catalytic active material from engine wear or fuel/ lubricant additives.
Technical Paper

VERT - Clean Diesel Engines for Tunnel Construction

1997-02-24
970478
Diesel engines are irreplaceable in tunnel construction. The particulate emissions of present day engines are so high that the imission limits valid since 1991 cannot be attained by ventilation alone. This problem had to be solved preparatory to the large tunnel projects in Switzerland, Austria and Germany. Several retro-fitting measures were investigated both in the laboratory and in field tests, within the scope of the Project VERT. Oxidation catalytic converters, exhaust gas recirculation, and the usage of special fuels cannot be recommended. Particulate trap deployment, in different systems, was mostly successful. Particular attention was focused on the dependable filtration of finest particulates < 200 nm. The VERT proved that exhaust gas after-treatment with particulate traps is feasible, cost effective and controllable in the field. Pertinent directives are in discussion.
Technical Paper

Urban Air Quality Improvements by Means of Vehicular Diesel Particle Filters

2008-04-14
2008-01-0336
The project objective was to investigate the ultrafine solid particle emissions of the prevalent traffic, by performing field measurements at an urban traffic artery in Zurich/Switzerland. Subsequently, various scenarios were postulated to assess the potential of the diesel particle filters (DPF) to improve curbside air quality. Soot aerosols are known to be carcinogenic [1]. If all heavy-duty diesel vehicles were equipped with DPFs, then the number of particles emitted from the entire vehicle fleet could be reduced by 75 to 80%. For PM10, the curtailment scope is considerably lower, around 20%, because more than half of those emissions are not from the exhaust and therefore would not be filtered.
Technical Paper

Trapping Efficiency Depending on Particulate Size

1996-02-01
960472
There is growing concern about the risk potential of Diesel particulates. This prompted two Swiss R&D projects focused on the capabilities of different soot trap concepts for filtering finest particulates. Eight different filter media, some in numerous variants, were tested on four different Diesel engines. All traps attained their gravimetric target. However, there are noticeable performance differences for finest particulates at or smaller than 50 nm. Fiber deep filters seem to be noticeably better than other filter types. If the carcinogens are mainly the finest particulates, then this criterion may become important in future trap evaluation.
Technical Paper

The Transient Behavior of Supercharged Passenger Car Diesel Engines Fitted with Particulate Traps

1989-02-01
890171
The acceleration response of a supercharged diesel engine passenger car, equipped with a particulate trap, is studied using a simulation program. The superchargers evaluated are the Comprex(R) pressure-wave supercharger as well as turbochargers with fixed and variable-geometry. The particulate trap is placed before the supercharger to promote the trap regeneration and to reduce the pumping gas-exchange work. Particulate traps currently used are such a large thermal sink that the acceleration response is unacceptable. There are promising innovations in progress to develop a particulate trap with less than a quarter of the present mass. The computations demonstrate that the acceleration response should then be acceptable.
Technical Paper

The Knitted Particulate Trap: Field Experience and Development Progress

1993-03-01
930362
Ceramic fibers, in a knitted structure, offer an elastic deep-filter medium having a very high specific surface. The robustness of this trap, and its invulnerability to thermo-shock, was demonstrated during a further year of development and tests. By using new manufacturing techniques, the filtration efficiency was further improved, pressure losses reduced, and the required volume diminished. New insight was obtained regarding the employment of the fiber medium for catalysis. The filter concept permits regeneration either electrically or by fuel-additives. The layout versatility facilitates deployment on vehicular and stationary engines, in the pre-turbo position, too.
Technical Paper

Testing of Combined DPF+SCR Systems for HD-retrofitting – VERTdePN

2009-04-20
2009-01-0284
New Diesel exhaust gas aftertreatment systems, with combined DPF*) and deNOx (mostly SCR) systems represent a very important step towards zero emission Diesel fleet. These combined systems are already offered today by several suppliers for retrofitting of HD vehicles. Reliable quality standards for those quite complex systems are urgently needed to enable decisions of several authorities. The present report informs about the international network project VERT *) dePN (de-activation, de-contamination, disposal of particles and NOx), which was started in Nov. 2006 with the objective to introduce the SCR-, or combined DPF+SCR-systems in the VERT verification procedure. Examples of results for some of the investigated systems are given. These investigations included parameters, which are important for the VERT quality testing: besides the regulated gaseous emissions several unregulated components such as NH3, NO2 and N2O were measured.
Technical Paper

Supercharging with Comprex® to Improve the Transient Behavior of Passenger Car Diesel Engines

1986-02-01
860450
Transient conditions are typically encountered in passenger car engine operation, and they have a major impact on the control system driver/vehicle, as well as on emissions. While turbocharging generally deteriorates the transient behavior of a vehicle engine, supercharging with the pressure wave machine Comprex retains characteristics which are nearly equal to those of a naturally aspirated engine. The elements involved in the transient process are discussed, and their effect on road performance and emissions is shown on the basis of experimentally obtained data.
Technical Paper

Secondary Emissions from Catalytic Active Particle Filter Systems

2003-03-03
2003-01-0291
Fine pored hot gas traps have filtration efficiencies exceeding 99% of the solid particles in the diesel exhaust gas. There is a favorable trend to deploy this technology ex-factory and retrofitting on-road and off-road engines. The trap system however functions as a chemical reactor. The filter has a large effective area and the engine exhaust gas has plenty of reactants, which can promote undesirable chemical reactions that release toxic secondary emissions. These effects may be amplified when traps have catalytic influence, e.g. due to surface coatings or fuel-borne catalysts. The VERT suitability tests for particle trap systems therefore include a detailed test procedure for verifying the presence of over 200 toxic substances. These include PAH, nitro-PAH, chlorinated dioxins, furans as well as metals. The paper describes test procedures, test reporting, sample extraction and analysis.
Technical Paper

Secondary Emissions Risk Assessment of Diesel Particulate Traps for Heavy Duty Applications

2005-01-19
2005-26-014
Most particulate traps efficiently retain soot of diesel engine exhaust but the potential hazard to form secondary emissions has to be controlled. The Diesel Particle Filter (DPF) regeneration is mainly supported by metal additives or metallic coatings. Certain noble or transition metals can support the formation of toxic secondary emissions such as Dioxins, Polycyclic Aromatic Hydrocarbons (PAH), Nitro-PAH or other volatile components. Furthermore, particulate trap associated with additive metals can penetrate through the filter system or coating metals can be released from coated systems. The VERT test procedure was especially developed to assess the potential risks of a formation of secondary pollutants in the trap. The present study gives an overview to the VERT test procedure. Aspects of suitability of different fuel additives and coating metals will be discussed and examples of trap and additive induced formation of toxic secondary emissions will be presented.
Technical Paper

Retrofitting TRU-Diesel Engines with DPF-Systems Using FBC and Intake Throttling for Active Regeneration

2005-04-11
2005-01-0662
Transport Refrigeration Units (TRU) powered by small diesel engines emit high PM and cause locally high PM levels. The concomitant health risks spurred efforts to devise a cost-effective curtailment of these emissions. Diesel particulate filters (DPF) of ceramic honeycomb construction very efficiently trap PM emissions, even ultrafines in the lung penetrating size range of below 300 nm. A fuel borne catalyst (FBC) can facilitate trap regeneration, by lowering the exhaust temperature requirements, but cannot alone guarantee reliable regeneration under all operating conditions of the TRU. A Swiss development team together with industrial partners therefore developed a fully automatic active regeneration system for the California Air Resources Board.
Technical Paper

Retention of Fuel Borne Catalyst Particles by Diesel Particle Filter Systems

2003-03-03
2003-01-0287
Metallic substances, usually added to fuel as organic compounds are, as fuel additives proven to curtail particulate emissions from diesel engines and, as fuel borne catalysts (FBC), to promote regeneration of particle traps. During combustion, these substances form catalytic metal oxides and exit the combustion chamber as ultra-fine solid clusters in the mobility diameter range of 5-30 nm. Particles of this size and composition have a health impact and should not enter the respiratory air. FBC should therefore only be used together with particle traps, which can efficiently collect these metal oxide particles at all operating conditions. This and other requirements are stipulated in the VERT suitability tests for particle trap systems. The approval procedure includes a particle size-specific analysis to verify trap penetration in trace quantities.
Journal Article

Properties of Partial-Flow and Coarse Pore Deep Bed Filters Proposed to Reduce Particle Emission of Vehicle Engines

2009-04-20
2009-01-1087
Four of these Particulate Reduction Systems (PMS) were tested on a passenger car and one of them on a HDV. Expectation of the research team was that they would reach at least a PM-reduction of 30% under all realistic operating conditions. The standard German filter test procedure for PMS was performed but moreover, the response to various operating conditions was tested including worst case situations. Besides the legislated CO, NOx and PM exhaust-gas emissions, also the particle count and NO2 were measured. The best filtration efficiency with one PMS was indeed 63%. However, under critical but realistic conditions filtration of 3 of 4 PMS was measured substantially lower than the expected 30 %, depending on operating conditions and prior history, and could even completely fail. Scatter between repeated cycles was very large and results were not reproducible. Even worse, with all 4 PMS deposited soot, stored in these systems during light load operation was intermittently blown-off.
Technical Paper

Pre-Turbo Application of the Knitted Fiber Diesel Particulate Trap

1994-03-01
940459
The development of particulate-traps for big engines is more difficult than for automobile applications. The usual placement, after the turbocharger, necessitates complex solutions to challenges in size, flow distribution and regeneration. The placement of the particulate trap ahead of the turbocharger has technical and financial advantages, and has previously been extensively investigated, but did not prevail because of poor reliability of the monolithic traps. This paper investigates the knitted fiber trap, a mechanically and thermically dependable unit, developed for integration into the engine. A modular design makes the trap very compact. Filtration rate and pressure loss are satisfactory. The filter element has not shown any weakness. A typical deficiency of this application, that needs further investigation, is worsening of the engine's transient response by the thermal inertia of the filter material.
Technical Paper

Passive Regeneration of Catalyst Coated Knitted Fiber Diesel Particulate Traps

1996-02-01
960138
Knitted fiber particulate traps facilitate deep-bed structures. These have excellent filtration properties, particularly for ultra-fine particulates. They are also suitable as substrate for catalytic processes. The two characteristics are: high total surface area of the filaments, and good mass transfer. These are prerequisites for intense catalytic activity. The deposited soot is uniformly distributed. Therefore, temperature peaks are avoided during regeneration. The tested coatings lower the regeneration temperature by about 200°C to burn-off temperatures below 350°C. Further improvements seem attainable. Thus, a purely passive regeneration appears feasible for most applications. The system is autonomous and cost effective. However, in extreme low load situations, e.g. city bus services, the necessary exhaust temperatures are not attained. Hence, burners or electrical heating is necessary for trap regeneration.
Technical Paper

Particulate Traps for Retro-Fitting Construction Site Engines VERT: Final Measurements and Implementation

1999-03-01
1999-01-0116
1 The VERT project aimed at curtailing the construction site diesel emissions of ultra-fine particles to 1% of the raw emissions. Thus, compliance with occupational health legislation should be achieved. Particulate traps have attained this target. In contrast, engine tuning, reformulated fuels and oxidation catalytic converters are almost ineffective. This paper reports on the concluding project stage in which 10 traps were field tested during 2 years. Subsequent detailed measurements confirmed the excellent results: > 99% filtration rate was achieved in the nano-particulate range. The PAH, too, were very efficiently eliminated. Trap deployment becomes therefore imperative to fulfill VERT-targets.
Technical Paper

Particulate Traps for Construction Machines Properties and Field Experience

2000-06-19
2000-01-1923
1 Occupational Health Authorities in Germany and Switzerland require the use of particulate traps (PT) on construction machines used in underground and in tunneling since 1994. Swiss EPA has extended this requirement 1998 to all construction sites which are in or close to cities. During the VERT*-project, [1, 2, 3, 4, 5]**, traps systems were evaluated for this purpose and only those providing efficiencies over 95% for ultrafine particles < 200 nm have received official recommendation. 10 trap-systems are very popular now for these application, most of them for retrofitting existing engines. Efficiency data will be given as well as experience during a 2-years authority-controlled field test. LIEBHERR, producing their own Diesel engines in Switzerland and construction machines in Germany is the first company worldwide supplying particulate traps as OEM-feature (Original Equipment Manufacturing) on customers request.
Technical Paper

Particulate Traps Used in City-Buses in Switzerland

2000-06-19
2000-01-1927
1 Switzerland is enforcing the use of particulate traps for offroad applications like construction as well as for occupational health applications like tunneling. This decision is based on the results of the VERT-project (1994-1999), which included basic aerosol research, bench screening and field testing of promising solutions as well as the development of implementation tools like trap specification, certification scheems and field control measures. On the other hand there is no corresponding regulation for city-buses yet although PM 10 is about 2× above limit in most Swiss cities. Public pressure however is growing and city transport authorities have reacted by retrofitting Diesel city-buses instead of waiting for cleaner engine technology or CNG-conversions. The favored trap system with about 200 retrofits so far is the CRT.
Technical Paper

Particulate Trap Selection for Retrofitting Vehicle Fleets Based on Representative Exhaust Temperature Profiles

2001-03-05
2001-01-0187
1 A methodology for correctly matching trap systems to the vehicle types was developed within the scope of a feasibility study to retrofit the entire Swiss fleet of on-road HDV. Representative test vehicles from 11 vehicle categories were equipped with high capacity data loggers during a period of 4-6 weeks. Statistical evaluation of exhaust temperatures indicate that data on averages, peaks and frequency distributions alone can be misleading, because these tend to over-estimate the available exhaust enthalpy. Analysis of dwell time intervals, at certain temperature levels, is a better method to assess the energy available for the regeneration. Such verification of duty cycles is indispensable before retrofitting traps and choosing either active or passive regeneration systems.
X