Refine Your Search

Topic

Search Results

Standard

Valves, Safety, Cabin Air, General Specification For

1999-11-01
HISTORICAL
AS5379
This specification covers the general requirements for cabin air safety valves for use in pressurized cabins of aircraft to prevent excess positive and negative pressures in the cabin and to provide a means of cabin pressure release in case of emergency.
Standard

The Advanced Environmental Control System (AECS) Computer Program for Steady State Analysis and Preliminary System Sizing

1997-10-01
HISTORICAL
AIR1706B
Many different computer programs have been developed to determine performance capabilities of aircraft environmental control systems, and to calculate size and weight tradeoffs during preliminary design. Many of these computer programs are limited in scope to a particular arrangement of components for a specific application. General techniques, providing flexibility to handle varied types of ECS configurations and different requirements (i.e., during conceptual or preliminary design, development, testing, production, and operation) are designated “company proprietary” and are not available for industry-wide use. This document describes capabilities, limitations, and potentials of a particular computer program which provides a general ECS analysis capability, and is available for use in industry. This program, names AECS1, was developed under the sponsorship of the U.S. Air Force Flight Dynamics Laboratory (References 1 and 2).
Standard

THE ADVANCED ENVIRONMENTAL CONTROL SYSTEM (AECS) COMPUTER PROGRAM FOR STEADY STATE ANALYSIS AND PRELIMINARY SYSTEM SIZING

1986-10-01
HISTORICAL
AIR1706A
Many different computer programs have been developed to determine performance capabilities of aircraft environmental control systems, and to calculate size and weight tradeoffs during preliminary design. Many of these computer programs are limited in scope to a particular arrangement of components for a specific application. General techniques, providing flexibility to handle varied types of ECS configurations and different requirements (i.e., during conceptual or preliminary design, development, testing, production, and operation) are designated "company proprietary" and are not available for industry-wide use. This document describes capabilities, limitations, and potentials of a particular computer program which provides a general ECS analysis capability, and is available for use in industry. This program, names AECS1, was developed under the sponsorship of the U.S. Air Force Flight Dynamics Laboratory (References 1 and 2).
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC, AIRPLANE CABIN

1956-03-15
HISTORICAL
ARP89B
This recommended practice covers automatic cabin temperature control systems of the following types for pressurized and unpressurized cabins: Type I - Proportioning. Type II - On-Off, or Cycling. Type III - Floating, including modifications thereof.
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC, AIRCRAFT COMPARTMENT

1992-03-01
HISTORICAL
ARP89C
The recommendations of this ARP are primarily intended to be applicable to temperature control of compartments, occupied or unoccupied, of civil aircraft whose prime function is the transporting of passengers or cargo. The recommendations will apply, however, to a much broader category of civil and military aircraft where automatic temperature control systems are applicable.
Standard

SAE Aerospace Applied Thermodynamics Manual Aerothermodynamic Systems Engineering and Design

2019-09-24
CURRENT
AIR1168/3A
This document is one of 14 Aerospace Information Reports (AIR) of the Third Edition of the SAE Aerospace Applied Thermodynamics Manual. The manual provides a reference source for thermodynamics, aerodynamics, fluid dynamics, heat transfer, and properties of materials for the aerospace industry. Procedures and equations commonly used for aerospace applications of these technologies are included.
Standard

Liquid Cooling Systems

2016-09-10
WIP
AIR1811B
The purpose of this Aerospace Information Report (AIR) is to provide guidelines for the selection and design of airborne liquid cooling systems. This publication is applicable to liquid cooling systems of the closed loop type and the expendable coolant type in which the primary function is transporting of heat from its source to a heat sink. Most liquid cooling system applications are oriented toward the cooling of electronics. Liquid cooling techniques, heat sinks, design features, selection of coolants, corrosion control, and servicing requirements for these systems are presented. Information on vapor compression refrigeration systems, which are a type of cooling system, is found in Reference 1.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

1997-12-01
CURRENT
ARP699E
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Guide for Qualification Testing of Aircraft Air Valves

2015-05-29
CURRENT
ARP986D
This SAE Aerospace Recommended Practice (ARP) defines recommended analysis and test procedures for qualification of pneumatically, electrically, manually, and hydraulically actuated air valves. They may be further defined as valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff). Qualification testing performed on the airplane to verify compatibility of the valve function and stability as part of a complete system is outside the scope of this document. Refer to ARP1270 for design and certification requirements for cabin pressurization control system components. As this document is only a guide, it does not supersede or relieve any requirements contained in detailed Customer specifications.
Standard

Guide for Qualification Testing of Aircraft Air Valves

1997-03-01
HISTORICAL
ARP986C
This Aerospace Recommended Practice (ARP) defines tests to be performed on hydraulically, electrically, pneumatically, and mechanically actuated air valves. They may be further defined as those valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff).
Standard

General Requirements for Application of Vapor Cycle Refrigeration Systems for Aircraft

1997-10-01
HISTORICAL
ARP731B
Recommendations of this ARP refer specifically to the application of closed cycle vapor cycle refrigeration systems as a source of cooling in an aircraft air conditioning system. General recommendations for an air conditioning system which may include a vapor cycle system as a cooling source are included in ARP85, Air Conditioning Equipment, General Requirements for Subsonic Airplanes, ARP292, Air Conditioning, Helicopters, General Requirements For, and AIR806, Air Conditioning Design Information for Cargo and High Density Passenger Transport Airplanes, and are not included herein. Vapor cycle refrigeration system design recommendations are presented in this ARP in the following general areas: a SYSTEM Design Recommendations: (See Section 3) b COMPONENT Design Recommendations: (See Section 4) c Desirable Design Features: (See Section 5)
Standard

GUIDE FOR QUALIFICATION TESTING OF AIRCRAFT AIR VALVES

1990-02-28
HISTORICAL
ARP986B
This Aerospace Recommended Practice (ARP) defines tests to be performed on hydraulically, electrically, pneumatically, and mechanically actuated air valves. They may be further defined as those valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff).
Standard

GUIDE FOR QUALIFICATION TESTING OF AIRCRAFT AIR VALVES

1982-10-01
HISTORICAL
ARP986A
This document defines tests to be performed on electrically, pneumatically, and mechanically actuated (regulating, modulating, and shutoff) air valves. The valves may be further defined as those which function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions to maintain a calibrated duct air condition (i.e., air flow, air pressure, air temperature, air pressure ratio, etc.). The requirements of this document should govern for all qualification tests unless different requirements are established by the detail specifications.
Standard

GUIDE FOR PREPARING AN ECS COMPUTER PROGRAM USER'S MANUAL

1980-06-01
HISTORICAL
ARP1623
These recommendations apply to the user's manual for any computer program pertaining to aircraft ECS. This includes computer programs for: a Cabin air conditioning and pressurization performance. b Avionics equipment cooling system performance. c Engine bleed air system performance. d Compartment and equipment thermal analysis. e Environmental protection system performance. These recommendations apply to user's manuals for generalized computer programs as well as those for a specific component or system.
X