Refine Your Search

Topic

Search Results

Standard

Titanium Alloy Preforms from Plasma Arc Directed Energy Deposition Additive Manufacturing on Substrate Ti-6Al-4V Stress Relieved

2019-01-31
CURRENT
AMS7004
This specification covers preforms fabricated up through 5.5 inches (140 mm) inclusive in deposition width thickness (see 8.2.5) using a Plasma Arc Directed Energy Deposition (PA-DED) additive manufacturing process on a Ti-6Al-4V substrate that are subjected to post-deposition stress relief heat treatment. This is a wire fed additive manufacturing process. If required by the CEO, preforms may require subsequent machining to meet requirements for their intended final part application.
Standard

Powder History Metric and Labeling Schema

2022-11-22
CURRENT
ARP7044
This SAE Aerospace Recommended Practice (ARP) describes a method to measure, track, and characterize the history of powder feedstock when consumed in the production of parts via additive manufacturing (AM). The history captured as part of this ARP includes AM process exposure, feedstock consumption, blending, and losses associated with the totality of the AM workflow. This document also outlines a two-part metric schema for used powder feedstock consequential of its process exposure history. This metric schema also enables aligning risk determination and usage practices for used powder when based on a correlation between tabulated values in the scheme and user-identified metrics. These correlated metrics with schema values may also be used when establishing powder blending workflows or identifying end-of-life for feedstock.
Standard

Metal Powder Feedstock Size Classifications

2021-04-22
CURRENT
AMS7025
This specification covers particle size classifications and corresponding particle size distribution requirements for metal powder feedstock conforming to a classification.
Standard

Machine Qualification for Fusion-Based Metal Additive Manufacturing

2022-08-17
CURRENT
AMS7032
This standard has notes/guidance narratives interspersed throughout. These notes/guidance narratives are identified by a header and by text in italics. This standard defines a series of requirements that results in a specific AM machine qualified to produce material (see GN1) in compliance to an aerospace materials specification. The machine control and/or configuration types are discussed in the next sections. The industry (including AIA and ASTM) generally acknowledges that there are three qualification milestones for AM machines; nevertheless, this document will focus only on the initial two stages, namely: Installation Qualification (IQ): Producing objective evidence to show that all key aspects of the process equipment and ancillary system installation adhere to the AM Part Producer’s specification and that the recommendations of the supplier of the equipment are suitably considered; this is tied to a specific machine serial number.
Standard

Laser-Powder Bed Fusion (L-PBF) Produced Parts, Nickel Alloy, Corrosion- and Heat-Resistant, 62Ni - 21.5Cr - 9.0Mo - 3.65Nb Stress Relieved, Hot Isostatic Pressed and Solution Annealed

2022-05-16
CURRENT
AMS7000A
This specification covers a corrosion and heat-resistant nickel alloy in the form of parts produced by laser-powder bed fusion (L-PBF) that are subjected to post-deposition stress relief (SR), hot isostatic press (HIP) and solution anneal operations. Parts may require subsequent machining or surface finishing to meet specific application requirements.
Standard

Laser-Powder Bed Fusion (L-PBF) Produced Parts, Nickel Alloy, Corrosion and Heat-Resistant, 62Ni - 21.5Cr - 9.0Mo - 3.65Nb Stress Relieved, Hot Isostatic Pressed and Solution Annealed

2018-06-08
HISTORICAL
AMS7000
This specification covers a corrosion and heat-resistant nickel alloy in the form of parts produced by laser-powder bed fusion (L-PBF) that are subjected to post-deposition stress relief (SR), hot isostatic press (HIP) and solution anneal operations. Parts may require subsequent machining or surface finishing to meet specific application requirements.
X