Refine Your Search

Topic

Search Results

Standard

Wire Fed Plasma Arc Directed Energy Deposition Additive Manufacturing Process

2019-01-31
CURRENT
AMS7005
This specification establishes process controls for the repeatable production of preforms by Wire Fed Plasma Arc Directed Energy Deposition (PA-DED). It is intended to be used for aerospace parts manufactured using Additive Manufacturing (AM) metal alloys, but usage is not limited to such applications.
Standard

Titanium Alloy Preforms from Plasma Arc Directed Energy Deposition Additive Manufacturing on Substrate, Ti-6Al-4V, Stress Relieved

2024-01-19
WIP
AMS7004A
This specification covers preforms fabricated up through 5.5 inches (140 mm) inclusive in deposition width thickness (see 8.2.5) using a Plasma Arc Directed Energy Deposition (PA-DED) additive manufacturing process on a Ti-6Al-4V substrate that are subjected to post-deposition stress relief heat treatment. This is a wire fed additive manufacturing process. If required by the CEO, preforms may require subsequent machining to meet requirements for their intended final part application.
Standard

Titanium Alloy Preforms from Plasma Arc Directed Energy Deposition Additive Manufacturing on Substrate Ti-6Al-4V Stress Relieved

2019-01-31
CURRENT
AMS7004
This specification covers preforms fabricated up through 5.5 inches (140 mm) inclusive in deposition width thickness (see 8.2.5) using a Plasma Arc Directed Energy Deposition (PA-DED) additive manufacturing process on a Ti-6Al-4V substrate that are subjected to post-deposition stress relief heat treatment. This is a wire fed additive manufacturing process. If required by the CEO, preforms may require subsequent machining to meet requirements for their intended final part application.
Standard

Taxonomy and Definitions for Terms Related to In Situ Process Monitoring Modality-Capability Index

2022-11-17
WIP
ARP7065
This document describes in situ process monitoring systems of additive manufacturing equipment that assess performance or capability to maintain a stable additive manufacturing process and potentially perform part or all of feed forward control (FFC) for continued operations on an intermittent or sustained basis. It provides a taxonomy with detailed definitions for seven levels of in situ process monitoring systems, ranging from machine input monitoring (Level 0) to in-process flaw detection with correction of such flaw using full process automation (Level 5), in the context of AM machine equipment and their operation in a manufacturing environment.
Standard

Process Requirements for Production of Metal Powder Feedstock for Use in Additive Manufacturing of Aerospace Parts

2022-05-16
CURRENT
AMS7002A
This specification is to prescribe process requirements for production (from raw materials through preparation for shipment, see 8.6) of metal powder feedstock for use in additive manufacturing of aerospace parts. This specification covers requirements for the production of metal powder for use as feedstock in additive manufacturing. Such powders may be pre-alloyed or commercially pure. This specification is not limited to a specific powder production method. It is intended to define those procedures and requirements necessary to achieve required cleanliness and performance of metal powder feedstock to be used in the manufacture of aerospace parts. This specification is intended to be used in conjunction with AMS powder specifications for additive manufacturing.
X