Refine Your Search

Topic

Search Results

Standard

WDM LAN Network Management And Control

2014-11-07
WIP
AS5659/3
This document describes network management and control facilities for the WDM LAN, within the SAE AS5659 WDM LAN specifications document family. Unlike like point-to-point solutions, networks require a control plane to allocate the shared network resources and a management plane which provides a disciplined approach to configuring and monitoring the network. Within a Wavelength Division Multiplexed (WDM) environment, management and control provides wavelength selection and routing for traffic that is processed. The extent of network management and control depends on the design of the network, and can range from hardwired wavelengths to dynamic wavelength allocation with damage recovery.
Standard

WDM LAN Access and Aggregation

2014-11-07
WIP
AS5659/2
This document describes the Client Adaptation Element (CAE), the set of functions that provides access and aggregation capability for the WDM LAN, within the SAE AS5659 WDM LAN specifications document family. In the WDM LAN, the CAE fits in between the Optical Backbone, which provides transmission of data over the transparent network, and the clients which the network serves. The complexity of the CAE depends on the types and number of clients.
Standard

Transparent Optical Backbone Network Specification

2014-11-07
WIP
AS5659/1
This document provides a specification for the WDM Optical Backbone Network (OBN) within the SAE AS5659 WDM LAN specifications document family. The specification applies to any optical network which uses Wavelength Division Multiplexing (WDM) in any optical media, and describes a transparent optical network that contains optical components (i.e. without Optical-to-Electrical conversion). The specification describes optical network elements (ONE) that perform optical transport, optical add/drop, optical amplification, optical routing, and optical switching functions. Performance limits are given for conforming optical signal interfaces and transfer functions for the ONEs, as well as architectures comprising combinations of them. This specification will enable network and systems engineers to design and use scalable and upgradable WDM based optical networks aboard mobile platforms.
Standard

Terminus, Fiber Optic, Harsh Environment, General Specification

2021-11-23
CURRENT
AS8438
This document provides details of test methods that should be taken into consideration when qualifying fiber optic termini to the product specifications (slash sheets). The product specifications (slash sheets) provide pass/fail criteria, optical and physical intermatability, and interoperability requirements for fiber optic termini in circular, rectangular, and modular type aerospace connectors.
Standard

Splicer, Fusion, Fiber Optic, Aerospace, Explosion-Proof (Type I)

2020-01-30
CURRENT
AS6479/1
This detail specification defines fiber optic fusion splicers acceptable for the installation and repair of a wide range of optical fibers and cables with virtually no insertion loss in hazardous environments (potentially flammable or explosive atmospheres, Type I), particularly aerospace applications. The requirements for acquiring the splicer described herein shall consist of this specification and the latest issue of AS6479.
Standard

Splicer, Fusion, Fiber Optic, Aerospace Non-Explosion-Proof (Type II)

2020-01-30
CURRENT
AS6479/2
This detail specification defines fiber optic fusion splicers acceptable for the installation and repair of a wide range of optical fibers and cables with virtually no insertion loss, particularly in aerospace applications, but not in flammable or explosive atmospheres (Type II). The requirements for acquiring the splicer described herein shall consist of this specification and the latest issue of AS6479.
Standard

Reliability Assurance of Photonic Integrated Circuit (PIC) Based Devices Used in Aerospace Applications

2019-10-24
WIP
ARP6676
This document is intended to provide reliability assurance recommended practices for the deployment of individual photonic devices and PIC-based devices into aerospace platforms, focusing on reliability requirements to reach Technology Readiness Level (TRL) 7, 8 and 9. It will cover reliability assurance tests for single element and PIC chips, packaged single element and PIC chips and some single element and PIC based higher functionality modules, such as fiber-optic transmitters and receivers, free space optical transmitters and receivers, illuminators and sources for optical sensors. The document will provide the reasons and methods for aerospace reliability assurance of PIC chips, PIC based packages and PIC based devices. It will be as inclusive as possible, including PIC chips fabricated in the main material systems: semiconductors (Group IV, III-V, II-VI), electro-optic crystals (lithium niobate) and polymers.
X