Refine Your Search

Topic

Search Results

Standard

Termini, Fiber Optic, Harsh Environment, General Specification

2018-04-04
WIP
AS8438
This standard defines the design and performance requirements of physical contact and expanded beam configured termini for both multimode and singlemode optical fibers. Expanded beam includes ball, Graded Index (GRIN) and C-lens configurations.
Standard

Splicer, Fusion, Fiber Optic, Aerospace, Explosion-Proof (Type I)

2015-07-04
CURRENT
AS6479/1
This detail specification defines fiber optic fusion splicers acceptable for the installation and repair of a wide range of optical fibers and cables with virtually no insertion loss in hazardous environments (potentially flammable or explosive atmospheres, Type I), particularly aerospace applications. The requirements for acquiring the splicer described herein shall consist of this specification and the latest issue of AS6479.
Standard

Splicer, Fusion, Fiber Optic, Aerospace Non-Explosion-Proof (Type II)

2015-07-04
CURRENT
AS6479/2
This detail specification defines fiber optic fusion splicers acceptable for the installation and repair of a wide range of optical fibers and cables with virtually no insertion loss, particularly in aerospace applications, but not in flammable or explosive atmospheres (Type II). The requirements for acquiring the splicer described herein shall consist of this specification and the latest issue of AS6479.
Standard

Splicer, Fusion, Fiber Optic, Aerospace

2019-04-02
WIP
AS6479A
This SAE Aerospace Standard (AS) defines fiber optic fusion splicers acceptable for the installation and repair of fiber optic interconnects in aerospace applications. Two different application environments are defined, depending on whether there is risk of flammable vapor or hazardous atmosphere being present. Equipment suited to flammable or hazardous environments may be over specified for factory, depot, or other relatively safe environments. To address these different application environments, two types of fusion splicer will be specified in applicable detail specifications: Type I. For hazardous environments specifically including potentially flammable or explosive atmospheres. Type II. For environments in which it is established that there is no risk of flammable or explosive vapors being present.
Standard

Splicer, Fusion, Fiber Optic, Aerospace

2014-01-16
CURRENT
AS6479
This SAE Aerospace Standard (AS) defines fiber optic fusion splicers acceptable for the installation and repair of fiber optic interconnects in aerospace applications. Two different application environments are defined, depending on whether there is risk of flammable vapor or hazardous atmosphere being present. Equipment suited to flammable or hazardous environments may be over specified for factory, depot, or other relatively safe environments. To address these different application environments, two types of fusion splicer will be specified in applicable detail specifications: Type I. For hazardous environments specifically including potentially flammable or explosive atmospheres. Type II. For environments in which it is established that there is no risk of flammable or explosive vapors being present.
Standard

Reliability Assurance of Photonic Integrated Circuit (PIC) Based Devices Used in Aerospace Applications

2019-05-08
WIP
ARP7354
This document is intended to provide reliability assurance recommended practices for the deployment of individual photonic devices and PIC-based devices into aerospace platforms, focusing on reliability requirements to reach Technology Readiness Level (TRL) 7, 8 and 9. It will cover reliability assurance tests for single element and PIC chips, packaged single element and PIC chips and some single element and PIC based higher functionality modules, such as fiber-optic transmitters and receivers, free space optical transmitters and receivers, illuminators and sources for optical sensors. The document will provide the reasons and methods for aerospace reliability assurance of PIC chips, PIC based packages and PIC based devices. It will be as inclusive as possible, including PIC chips fabricated in the main material systems: semiconductors (Group IV, III-V, II-VI), electro-optic crystals (lithium niobate) and polymers.
Standard

Reliability Assurance of Photonic Integrated Circuit (PIC) Based Devices Used in Aerospace Applications

2019-10-24
WIP
ARP6676
This document is intended to provide reliability assurance recommended practices for the deployment of individual photonic devices and PIC-based devices into aerospace platforms, focusing on reliability requirements to reach Technology Readiness Level (TRL) 7, 8 and 9. It will cover reliability assurance tests for single element and PIC chips, packaged single element and PIC chips and some single element and PIC based higher functionality modules, such as fiber-optic transmitters and receivers, free space optical transmitters and receivers, illuminators and sources for optical sensors. The document will provide the reasons and methods for aerospace reliability assurance of PIC chips, PIC based packages and PIC based devices. It will be as inclusive as possible, including PIC chips fabricated in the main material systems: semiconductors (Group IV, III-V, II-VI), electro-optic crystals (lithium niobate) and polymers.
X