Refine Your Search



Search Results

Technical Paper

Tibia Bending: Strength and Response

Unembalmed human tibias were subjected to static and dynamic three-point bending tests using the Wayne State Translational Impactor. Simple supports potted to the bone near the proximal and distal epiphyses were attached to force transducers and load was applied at midspan by a 32-kg impactor that had a rigid 25-mm diameter cylindrical contact surface. Loads were applied through the normal flesh covering the bone, and were directed from the anterior to posterior or from lateral to medial. Each bone was loaded once and sustained fracture at or near mid-span. Peak bending moments, impact speeds and load-deflection data are presented. Data regarding cross-sectional properties adjacent to the fracture site and mineral content of the specimens are included, along with a study of the correlations of strength with these various parameters.
Technical Paper

Thoracic Injury Mechanisms and Biomechanical Responses in Lateral Velocity Pulse Impacts

The purpose of this study is to help understand the thoracic response and injury mechanisms in high-energy, limited-stroke, lateral velocity pulse impacts to the human chest wall. To impart such impacts, a linear impactor was developed which had a limited stroke and minimally decreased velocity during impact. The peak impact velocity was 5.6 ± 0.3 m/s. A series of BioSID and cadaver tests were conducted to measure biomechanical response and injury data. The conflicting effects of padding on increased deflection and decreased acceleration were demonstrated in tests with BioSID and cadavers. The results of tests conducted on six cadavers were used to test several proposed injury criteria for side impact. Linear regression was used to correlate each injury criterion to the number of rib fractures. This test methodology captured and supported a contrasting trend of increased chest deflection and decreased TTI when padding was introduced.
Technical Paper

The Effect of Variable Load Energy Absorbers on the Biodynamic Response of Cadavers

Several types of energy absorbers were tested on a sled simulating a crash deceleration using instrumented, seated erect dummies and cadavers. The energy absorbers were mechanical load limiting devices which attenuated the impact by yielding or tearing of metal. Their principal effects were to reduce the peak deceleration sustained by the occupant with the expected reduction in restraint forces. Constant load level energy absorbers were found to be unattractive because they can easily “bottom out” causing forces and body strains which could be much higher than those without absorbers. Head accelerations were significantly reduced by the energy absorbers as well as some body strain. However, spinal strains in the cadaver were not significantly reduced. They appear to be not only a function of the peak deceleration level but also of the duration of the pulse.
Technical Paper

Simulated Automotive Side Impact on the Isolated Human Pelvis: Phase I: Development of a Containment Device Phase II: Analysis of Pubic Symphysis Motion and Overall Pelvic Compression

PHASE I - A containment fixture was designed and manufactured to stabilize and preload isolated human pelves within a DYNATUP™ Drop Tower during simulated automotive side impact. The fixture was utilized during thirteen parametric tests aimed at determining boundary conditions which simulate inertial properties of whole cadavers during impacts of the isolated human pelvis. The resulting pelvic injuries (i.e., fractures) ranged from no fracture to complex acetabular fracture. These injuries were sustained with drop masses of 14.2-25.2 kg and impact velocities of 4.1-6.4 m/s. Peak force, measured during impact, ranged from 2.0-8.2 kN. PHASE II - Phrase II studies used nine additional human pelves to explored pelvis stiffness and pubis symphysis mobility under lateral impact to the greater trochanter. The containment device designed and tested in Phase I was utilized to stabilize and compressively preload the specimens during impact.
Technical Paper

Safety Performance of Asymmetric Windshields

A comparative study of the safety performance of asymmetric and standard HPR windshields was conducted. The effect of increased interlayer thickness was also quantified. There were four different types of asymmetric windshields which had inner layer thicknesses of 0.8 to 1.5 mm and interlayer thicknesses of 0.76 and 1.14 mm. The experimental program consisted of both full scale sled tests and headform drop tests. A total of 127 vehicular impacts were carried out using a modified Volkswagen Rabbit. The test subject was a 50th percentile Fart 572 anthropomorphic test device. The asymmetric windshields were found to have a lower lacerative potential than that of the standard windshield. The best TLI value of 5.2 was provided by a 0.8 - 0.76 mm windshield at 60 km/h. That for the standard windshield was 7.7 at the same speed. All HIC values were less than 1,000 at 48 km/h.
Technical Paper

SID Response Data in a Side Impact Sled Test Series

Heidelberg-type side impact sled tests were conducted using SID side impact dummies. These tests were run under similar conditions to a series of cadaveric sled tests funded by the Centers for Disease Control in the same lab. Tests included 6.7 and 9 m/s (15 and 20 mph) unpadded and 9 m/s padded tests. The following padding was used at the thorax: ARSAN, ARCEL, ARPAK, ARPRO, DYTHERM, 103 and 159 kPa (15 and 23 psi) crush strength paper honeycomb, and an expanded polystyrene. In all padded tests the dummy Thoracic Trauma Index, TTI(d) was below the value of 85 set by federal rulemaking (49 CFR, Part 571 et al., 1990). In contrast, cadavers in 9 m/s sled tests did not tolerate ARSAN 601 (MAIS 5) and 23 psi (159 kPa) paper honeycomb (MAIS 5), and 20 psi (138 kPa) Verticel™ honeycomb (MAIS 4), but tolerated 15 psi (103 kPa) paper honeycomb (average thoracic MAIS 2.3 in six tests).
Technical Paper

Regional Tolerance to Impact Acceleration

Human tolerance data have been acquired gradually over the past 25 years and are available for several body regions. There is now sufficient information to design restraint systems which can prevent serious injuries to the user and which have low injury-causing potential. This paper reviews recent research on injury mechanisms and injury tolerance. Most of the research was aimed at solving problems in automotive safety systems. Specific tolerance data for the following body regions are presented: head, chest, spine and lower extremities.
Technical Paper

Regional Tolerance of the Shoulder, Thorax, Abdomen and Pelvis to Padding in Side Impact

Lateral impact testing has been performed on the shoulder, thorax, abdomen and pelvis of human cadavers by several investigators. The impacts have either been whole body impacts in sled tests or pendulum type impacts to the separate regions. Based on the forces produced in these tests and the accompanying injury, initial recommendations can be made on force-tolerance and padding tolerance to the various regions of the human body in side impact. The pelvis has the highest force tolerance, followed by the shoulder, abdomen and thorax. Padding crush strength tolerance based on these forces and estimated contact areas are presented. This information is of practical importance to engineers who design door interior trim for side impact safety.
Technical Paper

Performance and Mechanical Properties of Various Padding Materials Used in Cadaveric Side Impact Sled Tests

Various types of padding have been used in side impact sled tests with cadavers. This paper presents a summary of performance of the padding used in NHTSA and WSU/CDC sled tests, and a summary of material properties of padding used in cadaveric sled tests. The purpose of this paper is to provide information on padding performance in cadavers, rather than optimum padding performance in dummies.
Technical Paper

Numerical Investigations of Interactions between the Knee-Thigh-Hip Complex with Vehicle Interior Structures

Although biomechanical studies on the knee-thigh-hip (KTH) complex have been extensive, interactions between the KTH and various vehicular interior design parameters in frontal automotive crashes for newer models have not been reported in the open literature to the best of our knowledge. A 3D finite element (FE) model of a 50th percentile male KTH complex, which includes explicit representations of the iliac wing, acetabulum, pubic rami, sacrum, articular cartilage, femoral head, femoral neck, femoral condyles, patella, and patella tendon, has been developed to simulate injuries such as fracture of the patella, femoral neck, acetabulum, and pubic rami of the KTH complex. Model results compared favorably against regional component test data including a three-point bending test of the femur, axial loading of the isolated knee-patella, axial loading of the KTH complex, axial loading of the femoral head, and lateral loading of the isolated pelvis.
Technical Paper

Motion Analysis of the Mandible during Low-Speed, Rear-End Impacts using High-Speed X-rays

There has been much debate over “whiplash”-induced temporomandibular joint (TMJ) dysfunction following low-speed, rear-end automobile collisions. While several authors have reported TMJ injury based on case studies post collision, there has been little biomechanical evidence showing that rear-end impact was the primary cause of such injury. The purpose of this study was to measure the relative translation between the upper and lower incisors in cadavers subjected to low-speed, rear-end impacts. High-speed x-ray images used for this analysis were reported previously for the analysis of cadaveric cervical spine kinematics during low-speed, rear-end impacts. The cadavers were positioned at various seatback angles and body postures, producing an overall picture of various seating scenarios.
Technical Paper

Mechanisms of Traumatic Rupture of the Aorta and Associated Peri-isthmic Motion and Deformation

This study investigated the mechanisms of traumatic rupture of the aorta (TRA). Eight unembalmed human cadavers were tested using various dynamic blunt loading modes. Impacts were conducted using a 32-kg impactor with a 152-mm face, and high-speed seatbelt pretensioners. High-speed biplane x-ray was used to visualize aortic motion within the mediastinum, and to measure deformation of the aorta. An axillary thoracotomy approach was used to access the peri-isthmic region to place radiopaque markers on the aorta. The cadavers were inverted for testing. Clinically relevant TRA was observed in seven of the tests. Peak average longitudinal Lagrange strain was 0.644, with the average peak for all tests being 0.208 ± 0.216. Peak intraluminal pressure of 165 kPa was recorded. Longitudinal stretch of the aorta was found to be a principal component of injury causation. Stretch of the aorta was generated by thoracic deformation, which is required for injury to occur.
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

Mechanical Characterization of Porcine Abdominal Organs

Typical automotive related abdominal injuries occur due to contact with the rim of the steering wheel, seatbelt and armrest, however, the rate is less than in other body regions. When solid abdominal organs, such as the liver, kidneys and spleen are involved, the injury severity tends to be higher. Although sled and pendulum impact tests have been conducted using cadavers and animals, the mechanical properties and the tissue level injury tolerance of abdominal solid organs are not well characterized. These data are needed in the development of computer models, the improvement of current anthropometric test devices and the enhancement of our understanding of abdominal injury mechanisms. In this study, a series of experimental tests on solid abdominal organs was conducted using porcine liver, kidney and spleen specimens. Additionally, the injury tolerance of the solid organs was deduced from the experimental data.
Technical Paper

Mathematical Model of an Airbag for a Three-Dimensional Occupant Simulation

A mathematical model of an airbag restraint system for automobile drivers, including the simulation of the simultaneous collapse of the steering column, has been developed. The model is designed to work in conjunction with a three-dimensional occupant model. It is capable of assessing the relative effects of airbag size, pressure, deployment rate, venting area, contact force, steering column collapse force, and column collapse distance. The results of the model are compared with experimental runs in which anthropometric dummies were used as test subjects. Good correlation was obtained for torso kinematics. The model can be conveniently used for a parametric study to aid the design of airbag restraint systems.
Technical Paper

Lower Limb Biomechanics

Normal motion of the lower limbs is discussed in this paper. The biomechanics of human gait has been studied experimentally using an instrumented walkway and analytically by means of mathematical models. Experimental methods for measuring ground reaction forces and limb kinematics are discussed. If limb kinematics are known, they can be used to compute the resultant joint forces and moments, using equations of motion which are algebraic in form. To obtain limb kinematics from the differential equations of motion, the problem is generally redundant, the degree of redundancy being equal to the number of unknown joint moments. The computation of muscle, ligament and bone contact forces from known resultant loads is also a redundant problem because there are more unknowns than there are available equations. For these there is no general consensus regarding the best objective function to be minimized.
Technical Paper

Lower Abdominal Tolerance and Response

Twelve unembalmed human cadavers were tested for lower abdominal injury tolerance and mechanical response. The impacts were in an anterior-to-posterior direction and the level of impact was primarily in the lower abdomen at the L3 level of the lumbar spine. The impactor mass was either 32 kg or 64 kg. The impactor face was a 25 mm diameter aluminum bar, with the long axis of the bar parallel to the width of the cadaver body. In this paper, mechanical response is presented in terms of force-time and penetration-time histories, and force vs. abdominal penetration cross-plots. Injury tolerance is described in terms of post-impact necropsy findings and AIS ratings. Based on our studies, the lower abdomen of the unembalmed human cadaver is much less stiff than is suggested by previous research, and the stiffness is velocity and mass dependent, as is suggested by the correlation coefficients presented in this paper. Force-time history and force-penetration response corridors are presented.
Technical Paper

Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-End Impacts

The purposes of this study were to measure the relative linear and angular displacements of each pair of adjacent cervical vertebrae and to compute changes in distance between two adjacent facet joint landmarks during low posterior- anterior (+Gx) acceleration without significant hyperextension of the head. A total of twenty-six low speed rear-end impacts were conducted using six postmortem human specimens. Each cadaver was instrumented with two to three neck targets embedded in each cervical vertebra and nine accelerometers on the head. Sequential x-ray images were collected and analyzed. Two seatback orientations were studied. In the global coordinate system, the head, the cervical vertebrae, and the first or second thoracic vertebra (T1 or T2) were in extension during rear-end impacts. The head showed less extension in comparison with the cervical spine.
Technical Paper

Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-ray

The principal focus of this study was the measurement of relative brain motion with respect to the skull using a high-speed, biplanar x-ray system and neutral density targets (NDTs). A suspension fixture was used for testing of inverted, perfused, human cadaver heads. Each specimen was subjected to multiple tests, either struck at rest using a 152-mm-diameter padded impactor face, or stopped against an angled surface from steady-state motion. The impacts were to the frontal and occipital regions. An array of multiple NDTs was implanted in a double-column scheme of 5 and 6 targets, with 10 mm between targets in each column and 80 mm between columns. These columns were implanted in the temporoparietal and occipitoparietal regions. The impacts produced peak resultant accelerations of 10 to 150 g, and peak angular accelerations between 1000 and 8000 rad/s2. For all but one test, the peak angular speeds ranged from 17 to 22 rad/s.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.