Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Model Comparing Impact Responses of the Homogeneous and Inhomogeneous Human Brain

1995-11-01
952714
A new three-dimensional human head finite element model, consisting of the scalp, skull, dura, falx, tentorium, pia, CSF, venous sinuses, ventricles, cerebrum (gray and white matter), cerebellum, brain stem and parasagittal bridging veins has been developed and partially validated against experimental data of Nahum et al (1977). A frontal impact and a sagittal plane rotational impact were simulated and impact responses from a homogeneous brain were compared with those of an inhomogeneous brain. Previous two-dimensional simulation results showed that differentiation between the gray and white matter and the inclusion of the ventricles are necessary in brain modeling to match regions of high shear stress to locations of diffuse axonal injury (DAI). The three-dimensional simulation results presented here also showed the necessity of including these anatomical features in brain modeling.
Technical Paper

A Preliminary Study of an Effective Restraint System for Pregnant Women and Children

1969-02-01
690814
A survey of accident reports and experimental studies showed that the lap belt does not provide sufficient protection for the pregnant car occupant in whom fetal injury or abortion often resulted. A net-type restraint system was used on pregnant sub-human primates which were subjected to decelerations of over 40g in a forward-facing configuration. The animals survived multiple impacts without treatment and delivered healthy infants. The data presented include belt loads, body kinematics, and intrauterine pressure measurements.
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

A Study of the Response of the Human Cadaver Head to Impact

2007-10-29
2007-22-0002
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests.
Technical Paper

Analysis of Head and Neck Response During Side Impact

1999-03-01
1999-01-0717
Numerical analyses of head and neck response during side impact are presented in this paper. A mathematical human model for side impact simulation was developed based on previous studies of other researchers. The effects of muscular activities during severe side impact were analyzed with the use of this model. This study shows that the effect of muscular activities is significant especially if the occupant is prepared to resist the impact. This result suggests that the modeling of muscles is important for the simulation of real accident situation.
Technical Paper

Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat

2006-11-06
2006-22-0022
Complete validation of any finite element (FE) model of the human brain is very difficult due to the lack of adequate experimental data. However, more animal brain injury data, especially rat data, obtained under well-defined mechanical loading conditions, are available to advance the understanding of the mechanisms of traumatic brain injury. Unfortunately, internal response of the brain in these experimental studies could not be measured. The aim of this study was to develop a detailed FE model of the rat brain for the prediction of intracranial responses due to different impact scenarios. Model results were used to elucidate possible brain injury mechanisms. An FE model, consisting of more than 250,000 hexahedral elements with a typical element size of 100 to 300 microns, was developed to represent the brain of a rat. The model was first validated locally against peak brain deformation data obtained from nine unique dynamic cortical deformation (vacuum) tests.
Technical Paper

Below Knee Impact Responses using Cadaveric Specimens

2004-11-01
2004-22-0004
Knee injuries represent about 10% of all injuries suffered during car crashes. Efforts to assess the injury risk to the posterior cruciate ligament (PCL) have been based on a study available in the literature (Viano et al., 1978), in which only two of the five knees tested had PCL ruptures. The aims of the current study were to repeat the study with a higher number of samples, study the effects of other soft tissues on knee response, and assess the adequacy of the experimental setup for the identification of a PCL tolerance. A total of 14 knees were tested using a high-speed materials testing machine. Eight were intact knees (with the patella and all the muscular and ligamentous structures), three were PCL-only knees (patella and all the muscular and ligamentous structures other than the PCL removed), and the last three were PCL-only knees with the tibia protected from bending fracture.
Technical Paper

Belt Slip Measurements on Human Volunteers and the Part 572 Dummy in Low -Gx Impact Acceleration

1983-10-17
831635
A series of volunteer and dummy impact experiments was performed on a Hyge-type (accelerator) sled to study the relative motion between the upper torso restraint and the torso surface. Kinematic measurements were made using a three-dimensional photogrammetric analysis of high-speed film data. Belt slip was found to be in the range of approximately 10 to 30 mm with more slip experienced by volunteers than the dummy. The dummy showed a slight change in amount of slip with acceleration level and all slip takes place within the first 80 ms of belt loading.
Technical Paper

Biomechanical Response of the Bovine Pia-Arachnoid Complex to Normal Traction Loading at Varying Strain Rates

2007-10-29
2007-22-0004
The pia-arachnoid complex (PAC) covering the brain plays an important role in the mechanical response of the brain due to impact or inertial loading. The mechanical properties of the bovine PAC under tensile loading have been characterized previously. However, the transverse properties of this structure, such as shear and normal traction which are equally important to understanding the skull/brain interaction under traumatic loading, have not been investigated. These material properties are essential information needed to adequately define the material model of the PAC in a finite element (FE) model of human brain. The purpose of this study was to determine, experimentally, the material properties of the PAC under normal traction loading. PAC specimens were obtained from freshly slaughtered bovine subjects from various locations.
Technical Paper

Biomechanical Response of the Bovine Pia-Arachnoid Complex to Tensile Loading at Varying Strain Rates

2006-11-06
2006-22-0025
The pia-arachnoid complex (PAC) covering the brain plays an important role in the mechanical response of the brain due to impact or inertial loading. However, the mechanical properties of the pia-arachnoid complex and its influence on the overall response of the brain have not been well characterized. Consequently, finite element (FE) brain models have tended to oversimplify the response of the pia-arachnoid complex, possibly resulting in a loss of accuracy in the model predictions. The aim of this study was to determine, experimentally, the material properties of the pia-arachnoid complex under quasi-static and dynamic loading conditions. Specimens of the pia-arachnoid complex were obtained from the parietal and temporal regions of freshly slaughtered bovine subjects with the specimen orientation recorded. Single-stroke, uniaxial quasi-static and dynamic tensile experiments were performed at strain-rates of 0.05, 0.5, 5 and 100 s-1 (n = 10 for each strain rate group).
Technical Paper

Brain/Skull Relative Displacement Magnitude Due to Blunt Head Impact: New Experimental Data and Model

1999-10-10
99SC22
Relative motion between the brain and skull may explain many types of brain injury such as intracerebral hematomas due to bridging veins rupture [1] and cerebral contusions. However, no experimental methods have been developed to measure the magnitude of this motion. Consequently, relative motion between the brain and skull predicted by analytical tools has never been validated. In this study, radio opaque markers were placed in the skull and neutral density markers were placed in the brain in two vertical columns in the occipitoparietal and temporoparietal regions. A bi-planar, high-speed x-ray system was used to track the motion of these markers. Due to limitations in current technology to record the x-ray image on high-speed video cameras, only low- speed (﹤ 4m/s) impact data were available.
Technical Paper

Computational Study of the Contribution of the Vasculature on the Dynamic Response of the Brain

2002-11-11
2002-22-0008
Brain tissue architecture consists of a complex network of neurons and vasculature interspersed within a matrix of supporting cells. The role of the relatively suffer blood vessels on the more compliant brain tissues during rapid loading has not been properly investigated. Two 2-D finite element models of the human head were developed. The basic model (Model I) consisted of the skull, dura matter, cerebral spinal fluid (CSF), tentorium, brain tissue and the parasagittal bridging veins. The pia mater was also included but in a simplified form which does not correspond to the convolutions of the brain. In Model II, major branches of the cerebral arteries were added to Model I. Material properties for the brain tissues and vasculature were taken from those reported in the literature. The model was first validated against intracranial pressure and brain/skull relative motion data from cadaveric tests.
Technical Paper

Development of a Computer Model to Predict Aortic Rupture Due to Impact Loading

2001-11-01
2001-22-0007
Aortic injuries during blunt thoracic impacts can lead to life threatening hemorrhagic shock and potential exsanguination. Experimental approaches designed to study the mechanism of aortic rupture such as the testing of cadavers is not only expensive and time consuming, but has also been relatively unsuccessful. The objective of this study was to develop a computer model and to use it to predict modes of loading that are most likely to produce aortic ruptures. Previously, a 3D finite element model of the human thorax was developed and validated against data obtained from lateral pendulum tests. The model included a detailed description of the heart, lungs, rib cage, sternum, spine, diaphragm, major blood vessels and intercostal muscles. However, the aorta was modeled as a hollow tube using shell elements with no fluid within, and its material properties were assumed to be linear and isotropic.
Technical Paper

Development of a Finite Element Model of the Human Shoulder

2000-11-01
2000-01-SC19
Previous studies have hypothesized that the shoulder may be used to absorb some impact energy and reduce chest injury due to side impacts. Before this hypothesis can be tested, a good understanding of the injury mechanisms and the kinematics of the shoulder is critical for occupant protection in side impact. However, existing crash dummies and numerical models are not designed to reproduce the kinematics and kinetics of the human shoulder. The purpose of this study was to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanisms and the kinematics of the shoulder in side impact. Basic anthropometric data of the human shoulder used to develop the skeletal and muscular portions of this model were taken from commercial data packages. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder.
Technical Paper

Development of a Three-Dimensional Finite Element Chest Model for the 5th Percentile Female

2005-11-09
2005-22-0012
Several three-dimensional (3D) finite element (FE) models of the human body have been developed to elucidate injury mechanisms due to automotive crashes. However, these models are mainly focused on 50th percentile male. As a first step towards a better understanding of injury biomechanics in the small female, a 3D FE model of a 5th percentile female human chest (FEM-5F) has been developed and validated against experimental data obtained from two sets of frontal impact, one set of lateral impact, two sets of oblique impact and a series of ballistic impacts. Two previous FE models, a small female Total HUman Model for Safety (THUMS-AF05) occupant version 1.0ϐ (Kimpara et al., 2002) and the Wayne State University Human Thoracic Model (WSUHTM, Wang 1995 and Shah et al., 2001) were integrated and modified for this model development.
Technical Paper

Development of a Two-Dimensional Driver Side Airbag Deployment Algorithm

1990-10-01
902323
A PC based interactive program was developed to simulate the unfolding and deploying process of a driver side airbag in the sagittal plane. The airbag was represented by a series of nodes. The maximum allowable stretch was less or equal to one between any two nodes. We assumed that the airbag unfolding was pivoted about folded points. After the completion of the unfolding process the airbag would begin to deploy. During the deploying process, two parameters were used to determine the nodal priority of the inflation. The first parameter was the distance between the instantaneous and final positions of a node. Nodes with longer distances to travel will have to move faster. We also considered the distance between the current nodal position and the gas inlet location. For a node closer to the gas inlet, we assumed that the deploying speed was faster. A graphical procedure was used to calculate the area of the airbag.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Development of an FE Model of the Rat Head Subjected to Air Shock Loading

2010-11-03
2010-22-0011
As early as the 1950's, Gurdjian and colleagues (Gurdjian et al., 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data.
Technical Paper

Dynamic Characteristics of the Human Spine During -Gx Acceleration

1978-02-01
780889
Spinal kinematics and kinetics of human cadaveric specimens subjected to -Gx acceleration are reported along with an attempt to design a surrogate spine for use in an anthropomorphic test device (ATD). There were a total of 30 runs on 9 embalmed and 2 unembalmed cadavers which were heavily instrumented. External photographic targets were attached to T1, T12, and the pelvis to record spinal kinematics. The subjects were restrained by upper and lower leg clamps attached to an impact seat equipped with a six-axis load cell. A rigid link 486 mm long and pinned at both ends was proposed for use in an ATD as a surrogate spine. An optimization method was used to obtain the location and length of a linkage which followed the least squares path of Tl relative to the pelvis.
Technical Paper

Dynamic Impact Loading of the Femur Under Passive Restrained Condition

1984-10-01
841661
The biodynamic response of the femur during passively restrained -Gx impact acceleration is reported in this paper. Eleven unembalmed cadavers, ranging in age from 21 to 65 and weighing from 50 to 96 kg, were tested in a VW Rabbit seat with a passive belt and knee restraint. Sectioned parts of the VW knee bolster were placed about 130 mm away from the patella at the initiation of the tests. The height of the knee bolsters was adjusted individually in the eleven tests. Ten were set for loading directly through the patella. In one run, the impact was below the knee joint. The sectioned bolsters were mounted on a rigid frame and instrumented with triaxial load cells. A six-axis load cell was installed in the right femur. Photo targets were attached directly to the femur and tibia. Sled runs were made at 22 and 35 g. Only one cadaver sustained bilateral femoral fractures at 35 g.
X