Refine Your Search

Search Results

Viewing 1 to 7 of 7
Standard

Reliability Prediction for Automotive Electronics Based on Field Return Data

2017-03-17
CURRENT
J3083_201703
This document should be used as guidance for non-handbook based reliability predictions conducted on automotive electronics products. It presents a method that utilizes warranty and field repair data to calculate the failure rates of individual electronic components and predict the reliability of the entire electronic system. It assumes that the user has access to a database containing field return data with classification of components, times to failure, and a total number of components operating in the field.
Standard

Reliability Prediction for Automotive Electronics Based on Field Return Data

2022-08-25
WIP
J3083
This document should be used as guidance for non-handbook based reliability predictions conducted on automotive electronics products. It presents a method that utilizes warranty and field repair data to calculate the failure rates of individual electronic components and predict the reliability of the entire electronic system. It assumes that the user has access to a database containing field return data with classification of components, times to failure, and a total number of components operating in the field.
Standard

Product Development Process and Checklist for Vehicle Electronic Systems

2015-07-30
HISTORICAL
J1938_201507
Since it is impossible to be all inclusive and cover every aspect of the design/validation process, this document can be used as a basis for preparation of a more comprehensive and detailed plan that reflects the accumulated "lessons learned" at a particular company. The following areas are addressed in this document: 1 Contemporary perspective including common validation issues and flaws. 2 A Robustness Validation (RV) process based on SAE J1211 handbook and SAE J2628. 3 Design checklists to aid in such a RV process.
Standard

Product Development Process and Checklist for Vehicle Electronic Systems

2022-11-22
CURRENT
J1938_202211
Since it is impossible to be all inclusive and cover every aspect of the design/validation process, this document can be used as a basis for preparation of a more comprehensive and detailed plan that reflects the accumulated “lessons learned” at a particular company. The following areas are addressed in this document: 1 Contemporary perspective including common validation issues and flaws. 2 A Robustness validation (RV) process based on SAE J1211 handbook and SAE J2628. 3 Design checklists to aid in such a RV process.
Standard

Handbook for Robustness Validation of Semiconductor Devices in Automotive Applications

2022-08-02
WIP
J1879
This document will primarily address intrinsic reliability of electronic components for use in automotive electronics. Where practical, methods of extrinsic reliability detection and prevention will also be addressed. The current handbook primarily focuses on integrated circuit subjects, but can easily be adapted for use in discrete or passive device qualification with the generation of a list of failure mechanisms relevant to those components. Semiconductor device qualification is the main scope of the current handbook. Other procedures addressing extrinsic defects are particularly mentioned in the monitoring chapter. Striving for the target of Zero Defects in component manufacturing and product use it is strongly recommended to apply this handbook. If it gets adopted as a standard, the term “shall” will represent a binding requirement. This document does not relieve the supplier of the responsibility to assure that a product meets the complete set of its requirements.
Standard

Handbook for Robustness Validation of Semiconductor Devices in Automotive Applications

2014-02-21
CURRENT
J1879_201402
This document will primarily address intrinsic reliability of electronic components for use in automotive electronics. Where practical, methods of extrinsic reliability detection and prevention will also be addressed. The current handbook primarily focuses on integrated circuit subjects, but can easily be adapted for use in discrete or passive device qualification with the generation of a list of failure mechanisms relevant to those components. Semiconductor device qualification is the main scope of the current handbook. Other procedures addressing extrinsic defects are particularly mentioned in the monitoring chapter. Striving for the target of Zero Defects in component manufacturing and product use it is strongly recommended to apply this handbook. If it gets adopted as a standard, the term “shall” will represent a binding requirement. This document does not relieve the supplier of the responsibility to assure that a product meets the complete set of its requirements.
Standard

Handbook for Robustness Validation of Automotive Electrical/Electronic Modules

2012-11-19
CURRENT
J1211_201211
This document addresses robustness of electrical/electronic modules for use in automotive applications. Where practical, methods of extrinsic reliability detection and prevention will also be addressed. This document primarily deals with electrical/electronic modules (EEMs), but can easily be adapted for use on mechatronics, sensors, actuators and switches. EEM qualification is the main scope of this document. Other procedures addressing random failures are specifically addressed in the CPI (Component Process Interaction) section 10. This document is to be used within the context of the Zero Defect concept for component manufacturing and product use. It is recommended that the robustness of semiconductor devices and other components used in the EEM be assured using SAE J1879 OCT2007, Handbook for Robustness Validation of Semiconductor Devices in Automotive Applications.
X