Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Effect of Swirl Ratio and Piston Geometry on the Late-Compression Mean Air-Flow in a Diesel Engine

2021-04-06
2021-01-0647
The rising concerns of emissions have put enormous strain on the automotive industry. Industry is, therefore looking for next-generation engines and advanced combustion technologies with ultra-low emissions and high efficiency. To achieve this, more insights into the combustion and pollutant formation processes in IC engines is required. Since conventional measures have not been insightful, in-situ measurement of combustion and pollution formation through optical diagnostics is being explored. Gaining full optical access into the diesel engine combustion chamber is a challenging task. The late-compression flow dynamics is not well understood due to limited access into the engine combustion chamber. These flow structures contribute immensely to fuel-air mixing and combustion. The objective of this study is to understand the role of combustion chamber design on vertical plane air-flow structures.
Technical Paper

Evaluation of Steel Cap Piston for Upgradation of Diesel Electric Locomotives for Indian Railways

2005-04-11
2005-01-1645
This paper deals with the evaluation of steel cap pistons for up-gradation of diesel electric locomotives for Indian Railways. These engines are four stroke, medium speed compression ignition engines (CR 12.5: 1) with output of 121 kW per cylinder on series 1 and 167 kW per cylinder on series 2. The series 1 engine uses single piece aluminum pistons, with rating of 0.295 kW/cm2 of piston crown area. A higher version of the series 1 engine with higher fuel efficiency and improvement in lube oil consumption was developed. As part of this improvement program, a composite steel cap piston with forged aluminum skirt was used. The whole engine up-gradation kit including the higher capacity turbocharger, higher fuel delivery pressure fuel pump, modified cam shaft, larger after-cooler along with the steel cap piston were evaluated for performance.
Technical Paper

Experimental Investigations on the Effect of Liner Surface Properties on Wear in Non-Firing Engine Simulator

2004-03-08
2004-01-0605
Several experimental studies have been conducted for evaluating coefficient of friction and wear in simulated engine conditions using a piston ring segment and a liner piece rubbing against each other in reciprocating mode under load and lubricated conditions. In the present experimental investigation, a non-firing engine simulator has been developed in order to simulate engine conditions to a much closer extent. This machine can operate at similar linear speed, stroke, and load and can simulate almost similar engine operating conditions except firing pressures. This machine can also be used for comparing liners with different surface properties and the effects of surface texture on wear and oil consumption. One cylinder liner has been used for experimentation and the wear and surface properties behaviour were evaluated at several locations in the liner. Surface profile, roughness parameters are evaluated at several locations in the liner and at the top compression ring.
Technical Paper

Experimental and Numerical Investigations of Jet Impingement Cooling of Piston of Heavy-Duty Diesel Engine for Controlling the Non-Tail Pipe Emissions

2007-04-16
2007-01-0763
The development of more efficient and powerful internal combustion engines requires the use of new and advanced engine technologies. These advanced engine technologies and emission requirements for meeting stringent global emission norms have increased the power densities of engine leading to downsizing. In all these engines, cylinder head and liner are normally cooled but the piston is not cooled, making it susceptible to disintegration/ thermal damage. Material constraints restrict the increase in thermal loading of piston. High piston temperature rise may lead to engine seizure because of piston warping. So pistons are additionally cooled by oil jet impingement from the underside of the piston in heavy duty diesel engines. However, if the temperature at the underside of the piston, where the oil jet strikes the piston, is above the boiling point of the oil, it may contribute to the mist generation.
Technical Paper

In-Cylinder Air-Flow Characteristics Using Tomographic PIV at Different Engine Speeds, Intake Air Temperatures and Intake Valve Deactivation in a Single Cylinder Optical Research Engine

2016-02-01
2016-28-0001
Fuel-air mixing is the main parameter, which affects formation of NOx and PM during CI combustion. Hence better understanding of air-flow characteristics inside the combustion chamber of a diesel engine became very important. In this study, in-cylinder air-flow characteristics of four-valve diesel engine were investigated using time-resolved high-speed tomographic Particle Imaging Velocimetry (PIV). For visualization of air-flow pattern, fine graphite particles were used for flow seeding. To investigate the effect of different operating parameters, experiments were performed at different engine speeds (1200 rpm and 1500 rpm), intake air temperatures (room temperature and 50°C) and intake port configurations (swirl port, tangential port and combined port). Intake air temperature was controlled by a closed loop temperature controller and intake ports were deactivated by using a customized aluminum gasket.
Technical Paper

Laser Ignition of Hydrogen-Air Mixture in a Combustion Bomb

2008-01-09
2008-28-0033
Due to the demands of the market to increase efficiency and power density of large MW size gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Within this broad range investigation, laser plasmas were generated by ns Nd-YAG laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen- air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. In this way, relevant parameters were acquired allowing estimation/ development of future laser ignition systems.
Technical Paper

Measurement of Lubricating Oil Film Thickness between Piston Ring -liner Interface in an Engine Simulator

2008-01-09
2008-28-0071
The interface between the piston rings and cylinder liner play an important role in total frictional losses and mechanical wear of internal combustion engine and is increasingly coming under scrutiny as legislated particulate emission standards are getting more and more stringent. The capacitance method is used for measurement of minimum oil film thickness between piston ring and liner interface. Measurement of capacitance formed between the piston ring and a probe mounted flush in the liner provides an accurate means of determining the oil film thickness provided that the region between the probe and liner is flooded with oil and dielectric constant of the oil is known. This paper presents detailed design and measurement of lubricating oil film thickness using capacitive micro sensor in a non-firing engine simulator. Lubricating oil film thickness was found to vary between 0.2μm to 8μm in the non firing engine simulator.
Technical Paper

Numerical Investigations Of Piston Cooling Using Oil Jet

2004-01-16
2004-28-0061
Thermal loading of diesel engine pistons has increased dramatically in recent years due to applications of various technologies to meet low emission and high power requirements. Control of piston temperatures by cooling of these pistons has become one of the determining factors in a successful engine design. The pistons are cooled by oil jets fired at the underside from the crankcase. Any undesirable piston temperature rise may lead to engine seizure due to piston warping. However, if the temperature at the underside of the piston, where the oil jet strikes the piston, is above the boiling point of the oil being used, it may contribute to the mist generation. This mist may significantly contribute to the non-tail pipe emissions in the form of unburnt hydrocarbons (UBHC). The problem of non-tail pipe emissions has unfortunately not been looked into so seriously, as the current stress of all the automobile manufacturers is on meeting the tail -pipe emission legislative limits.
Technical Paper

Numerical and Experimental Investigation of Oil Jet Cooled Piston

2005-04-11
2005-01-1382
Thermal loading of diesel engine pistons has increased dramatically in recent years due to applications of various advanced technologies to meet low emission and high power requirements. Control of piston temperatures by cooling of pistons has become one of the determining factors in a successful engine design. The pistons are cooled by oil jets fired at the underside from the crankcase. Any undesirable piston temperature rise may lead to engine seizure because of piston warping. However, if the temperature at the underside of the piston, where oil jet strikes the piston, is above the boiling point of the oil being used, it may contribute to the mist generation. This mist significantly contribute to the non-tail pipe emissions in the form of unburnt hydrocarbons (UBHC's), which has unfortunately not been looked into so seriously, as the current stress of all the automobile manufacturers is on meeting the tail pipe emission legislative limits.
Technical Paper

Tomographic PIV Evaluation of In-Cylinder Flow Evolution and Effect of Engine Speed

2016-04-05
2016-01-0638
In this study, 3D air-flow-field evolution in a single cylinder optical research engine was determined using tomographic particle imaging velocimetry (TPIV) at different engine speeds. Two directional projections of captured flow-field were pre-processed to reconstruct the 3D flow-field by using the MART (multiplicative algebraic reconstruction technique) algorithm. Ensemble average flow pattern was used to investigate the air-flow behavior inside the combustion chamber during the intake and compression strokes of an engine cycle. In-cylinder air-flow characteristics were significantly affected by the engine speed. Experimental results showed that high velocities generated during the first half of the intake stroke dissipated in later stages of the intake stroke. In-cylinder flow visualization indicated that large part of flow energy dissipated during the intake stroke and energy dissipation was the maximum near the end of the intake stroke.
Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
X