Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The Secondary Organic Carbon (SOC) Formation from a CRDI Automotive Diesel Engine Exhaust

2011-04-12
2011-01-0642
Condensed soot coming out of vehicular exhaust is commonly classified as organic carbon (OC) and elemental carbon (EC). OC can be directly emitted to the atmosphere in the particulate form (primary carbon) from the tailpipe or can be produced by gas-to-particle conversion process (secondary organic carbon, SOC). Under typical atmospheric dilution conditions, most of the semi-volatile material is present in the form of soot. SOC holds wider implications in terms of their adverse health and climate impact. Diesel exhaust is environmentally reactive and it has long been understood that the ambient interaction of exhaust hydrocarbons and NOx results in the formation of ozone and other potentially toxic secondary organic carbon species. The current emission norms look at the primary emissions from the engine exhaust. Also, research efforts are geared towards controlling the emissions of primary carbon.
Technical Paper

Measurement of Lubricating Oil Film Thickness between Piston Ring -liner Interface in an Engine Simulator

2008-01-09
2008-28-0071
The interface between the piston rings and cylinder liner play an important role in total frictional losses and mechanical wear of internal combustion engine and is increasingly coming under scrutiny as legislated particulate emission standards are getting more and more stringent. The capacitance method is used for measurement of minimum oil film thickness between piston ring and liner interface. Measurement of capacitance formed between the piston ring and a probe mounted flush in the liner provides an accurate means of determining the oil film thickness provided that the region between the probe and liner is flooded with oil and dielectric constant of the oil is known. This paper presents detailed design and measurement of lubricating oil film thickness using capacitive micro sensor in a non-firing engine simulator. Lubricating oil film thickness was found to vary between 0.2μm to 8μm in the non firing engine simulator.
Technical Paper

Field Trials of Biodiesel (B100) and Diesel Fuelled Common Rail Direct Injection Euro-III Compliant Sports Utility Vehicles in Indian Conditions

2008-01-09
2008-28-0077
Biodiesel is being explored as a sustainable renewable fuel for vehicles in India due to mounting foreign exchange expenditure to import crude petroleum. Significant amount of research and development work is being undertaken in India to investigate various aspects of biodiesel utilisation in different types of engines. This study is an effort to jointly investigate the use of biodiesel (B100) in an unmodified BS-III compliant sports utility vehicle (SUV) by a consortium of academia (IIT Kanpur) and Industry (M&M) to realistically assess whether biodiesel is compatible with modern engine technology vehicles. Two identical vehicles were operated in tandem using biodiesel (B100) and mineral diesel (B00) respectively for 30,000 kilometers in field conditions. The lubricating oil samples were collected and detailed analysis for assessing the comparative effect of new fuel (B100) vis-à-vis mineral diesel was carried out.
Journal Article

Experimental Investigations of the Tribological Properties of Lubricating Oil from Biodiesel Fuelled Medium Duty Transportation CIDI Engine

2008-04-14
2008-01-1385
Biodiesel is mono alkyl ester derived from vegetable oils through transesterification reaction and can be used as an alternative to mineral diesel. In the present research, methyl ester of rice-bran oil (ROME) is produced through transesterification of rice-bran oil using methanol in presence of sodium hydroxide (NaOH) catalyst. Various properties like viscosity, density, flash point, calorific value of the biodiesel thus prepared are characterized and found comparable to diesel. On the basis of previous research for performance, emission and combustion characteristics, a 20% blend of ROME (B20) was selected as optimum biodiesel blend for endurance test. Endurance test of 100 hours was conducted on a medium duty direct injection transportation diesel engine. Tests were conducted under predetermined loading cycles in two phases: engine operating on mineral diesel and engine fuelled with 20% biodiesel blend.
Technical Paper

Diesel Exhaust Particulate Characterization for Poly Aromatic Hydrocarbons and Benzene Soluble Fraction

2005-10-23
2005-26-348
This study was set out to characterize particulate emissions from diesel engines in terms of poly aromatic hydrocarbon emissions and Benzene Soluble Organic Fraction. The characteristics of DPM vary with engine operating conditions, quality of fuel and lubricants being used. Hence the diesel exhaust for the purpose of toxicity characterization needs to be studied for Organic Matter in terms of Poly Aromatic Hydrocarbon (PAH) and Benzene Soluble Fraction (BSF). Therefore, the objectives of the present research are to characterize the diesel exhaust particulate matter for the above parameters under varying engine operating conditions/loads. Six PAHs, namely Chrysene, Benzo (k) Flouranthene, Benzo (a) Pyrene, Dibenzo (a, h) Anthracene, Benzo (g,h,i) Perylene and Indenopyrene were analyzed on High Pressure Liquid Chromatography (HPLC). PAH concentrations in the particulates of Mahindra DI engine were affected by engine loads.
X