Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Study of Wall Y+ of Incompressible Turbulent Flow Over High Lift Devices Using CutCell Meshing

2013-04-08
2013-01-1402
In this study three dimensional numerical simulations were carried out for steady incompressible flows around complex airfoil shapes. NACA-0012 and NACA-23012 wing with 20 percent-c Clark Y flap were used for this study. This work shows that the CutCell mesh method has the ability to generate high quality mesh which captures the details of the viscous boundary layer.
Technical Paper

Shape Optimization of Multi-Element Airfoil Using Morphing Deformation

2014-04-01
2014-01-0288
This work studies an optimization tool for 2D and 3D a multi-element airfoil which utilizes the power of CFD solver of a Shape Optimizer package to find the most optimal shape of multi-element airfoil as per designer's requirement. The optimization system coupled with Fluent increases the utilization and the importance of CFD solver. This work focuses on combining the high fidelity commercial CFD tools (Fluent) with numerical optimization techniques to morph high lift system. In this work strategy we performed morphing (grid deformation) directly inside the Fluent code without rebuilding geometry and the mesh with an external tool. Direct search method algorithms such as the Simplex, Compass, and Torczon are used; Navier-Stokes equations were solved for turbulent, incompressible flow using k-epsilon model and SIMPLE algorithm using the commercial code ANSYS Fluent.
Technical Paper

Optimization of Modified Car Body Using Mesh Morphing Techniques in CFD

2016-04-05
2016-01-0009
Today's strict fuel economy requirement produces the need for the cars to have really optimized shapes among other characteristics as optimized cooling packages, reduced weight, to name a few. With the advances in automotive technology, tight global oil resources, lightweight automotive design process becomes a problem deserving important consideration. It is not however always clear how to modify the shape of the exterior of a car in order to minimize its aerodynamic resistance. Air motion is complex and operates differently at different weather conditions. Air motion around a vehicle has been studied quite exhaustively, but due to immense complex nature of air flow, which differs with different velocity, the nature of air, direction of flow et cetera, there is no complete study of aerodynamic analysis for a car. Something always can be done to further optimize the air flow around a car body.
Journal Article

Numerical Study of the Aerodynamic Characteristics of a Multi-Element Airfoil NACA 23012

2013-04-08
2013-01-1410
This work aims to numerically investigate the aerodynamic characteristics of a multi-element airfoil NACA 23012. The investigation was conducted through Computational Fluid Dynamics (CFD), using ANSYS FLUENT software. The Navier-Stokes equations were solved for turbulent, incompressible flow using k-epsilon model and SIMPLE algorithm. The study was carried out for both take-off / landing conditions and the results were compared to experimental data of the NACA 23012 from wind tunnel tests. The experimental and computational results for drag and lift coefficients match effectively up to pre-stall attack angles. The pressure coefficients, velocity distribution, and wall Y+ data were presented for different angles of attack (0 deg, 4 deg, and 8 deg). The CFD analysis could help acquire a closer and detailed understanding of airfoil performance, which is usually not easy through normal experimentation.
Technical Paper

Improving Engine Performance Through Intake Design

2013-04-08
2013-01-1404
The power and torque output of an engine (for a Formula SAE vehicle) can be dramatically improved through good intake design. For example, performance can be improved by reducing pressure losses in the intake system, or by improving the restrictor's design to increase airflow at lower pressure drops. A plenum design with equal air distribution to all cylinders can also be helpful. In this study, four different intake designs were tested on a dynamometer and the power outcomes were compared. Based on theory and lab testing and intake system was designed to optimize throttle response as well as low-end torque; a steady flow of air passes through the throttle body and the restrictor and then into the plenum. Dynamometer testing confirmed an overall increase in torque and horsepower compared to earlier designs.
Technical Paper

Effects of Inlet Curved Spacer Arrancement on Centrifugal Pump Impellers

2017-03-28
2017-01-1607
This paper presents an experimental investigation of flow field instabilities in a centrifugal pump impeller at low flow rates. The measurements of pump hydraulic performance and flow field in the impeller passages were made with a hydraulic test rig. Analysis of Q-ΔP-η data and flow structures in the impeller passages were performed. In the present work, the effect of various flowrates on centrifugal pump impeller performance was analyzed based on pump measured parameters. The impeller’s geometry was modified, with positioning the curved spacer at the impeller suction side. This research investigates the effect of each inlet curved spacer model on pump performance improvement. The hydraulic performance and cavitation performance of the pump have been tested experimentally. The flow field inside a centrifugal pump is known to be fully turbulent, three dimensional and unsteady with recirculation flows and separation at its inlet and exit.
Technical Paper

Aerodynamic Shape Optimization for a 3-D Multi-Element Airfoil

2014-04-01
2014-01-0296
This paper discusses the uses of shape morphing/optimization in order to improve the lift to drag ratio for a typical 3D multi-element airfoil. A mesh morpher algorithm is used in conjunction with a direct search optimization algorithm in order to optimize the aerodynamics performance of a typical high-lift device. Navier-Stokes equations are solved for turbulent, steady-state, incompressible flow by using k-epsilon model and SIMPLE algorithm using the commercial code ANSYS Fluent. Detailed studies are done on take-off/landing flight conditions; the results show that the optimization is successful in improving the aerodynamic performance.
X