Refine Your Search

Search Results

Viewing 1 to 13 of 13
Standard

Vibration Testing of Electric Vehicle Batteries

2009-03-04
HISTORICAL
J2380_200903
This SAE Recommended Practice describes the vibration durability testing of a single battery (test unit) consisting of either an electric vehicle battery module or an electric vehicle battery pack. For statistical purposes, multiple samples would normally be subjected to such testing. Additionally, some test units may be subjected to life cycle testing (either after or during vibration testing) to determine the effects of vibration on battery life. Such life testing is not described in this procedure; SAE J2288 may be used for this purpose as applicable.
Standard

Vibration Testing of Electric Vehicle Batteries

2021-12-21
CURRENT
J2380_202112
This SAE Recommended Practice describes the vibration durability testing of a single battery (test unit) consisting of either an electric vehicle battery module or an electric vehicle battery pack that is typically greater than 200 kg in mass and structurally integrated as part of the vehicle. For statistical purposes, multiple samples would normally be subjected to such testing. Additionally, some test units may be subjected to life cycle testing (either after or during vibration testing) to determine the effects of vibration on battery life. Such life testing is not described in this procedure; SAE J2288 may be used for this purpose as applicable. Finally, impact testing, such as crash and pothole, are not included in this procedure. SAE 2464 describes abusive/safety shock tests. Preferably, a specific vibration durability profile should be developed based on actual vehicle measurements for the specific electric vehicle application.
Standard

Vibration Testing of Electric Vehicle Batteries

2013-12-10
HISTORICAL
J2380_201312
This SAE Recommended Practice describes the vibration durability testing of a single battery (test unit) consisting of either an electric vehicle battery module or an electric vehicle battery pack. For statistical purposes, multiple samples would normally be subjected to such testing. Additionally, some test units may be subjected to life cycle testing (either after or during vibration testing) to determine the effects of vibration on battery life. Such life testing is not described in this procedure; SAE J2288 may be used for this purpose as applicable. Finally, impact testing, such as crash and pothole, is not included in this procedure.
Standard

Recommended Practice for Performance Rating of Lead Acid and Nickel Metal Hydride Electric Vehicle Battery Modules

2020-08-03
CURRENT
J1798/1_202008
This SAE Recommended Practice provides for common test and verification methods to determine lead acid and nickel metal hydride electric vehicle battery module performance. The document creates the necessary performance tests to determine (a) what the basic performance of EV battery modules is, and (b) if battery modules meet minimum performance specification established by vehicle manufacturers or other purchasers. Specific values for these minimum performance specifications are not a part of this document.
Standard

Recommended Practice for Performance Rating of Electric Vehicle Battery Modules

2019-11-13
CURRENT
J1798_201911
This SAE Recommended Practice provides for common test and verification methods to determine Electric Vehicle battery module performance. The document creates the necessary performance standards to determine (a) what the basic performance of EV battery modules is; and (b) whether battery modules meet minimum performance specification established by vehicle manufacturers or other purchasers. Specific values for these minimum performance specifications are not a part of this document.
Standard

Recommended Practice for Performance Rating of Electric Vehicle Battery Modules

2008-07-08
HISTORICAL
J1798_200807
This SAE Recommended Practice provides for common test and verification methods to determine Electric Vehicle battery module performance. The document creates the necessary performance standards to determine (a) what the basic performance of EV battery modules is; and (b) whether battery modules meet minimum performance specification established by vehicle manufacturers or other purchasers. Specific values for these minimum performance specifications are not a part of this document.
Standard

Lithium-Ion Cell Performance Testing

2023-01-13
CURRENT
J3220_202301
This SAE Recommended Practice defines performance and life cycle tests for lithium-ion cells used primarily for propulsion of electric vehicles including battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), and other similar propulsion applications (for example, forklift trucks). The objective of this document is to define common performance test procedures for lithium-ion cells. Results from these procedures can be used for comparative purposes. Performance requirements are not defined in this document, but are to be defined by the users of the document.
Standard

Life Cycle Testing of Electric Vehicle Battery Modules

2008-06-30
HISTORICAL
J2288_200806
This SAE Recommended Practice defines a standardized test method to determine the expected service life, in cycles, of electric vehicle battery modules. It is based on a set of nominal or baseline operating conditions in order to characterize the expected degradation in electrical performance as a function of life and to identify relevant failure mechanisms where possible. Accelerated aging is not included in the scope of this procedure, although the time compression resulting from continuous testing may unintentionally accelerate battery degradation unless test conditions are carefully controlled. The process used to define a test matrix of accelerated aging conditions based on failure mechanisms, and to establish statistical confidence levels for the results, is considered beyond the scope of this document. Because the intent is to use standard testing conditions whenever possible, results from the evaluation of different technologies should be comparable.
Standard

Life Cycle Testing of Electric Vehicle Battery Modules

2020-11-30
CURRENT
J2288_202011
This SAE Recommended Practice defines a standardized test method to determine the expected service life, in cycles, of electric vehicle battery modules. It is based on a set of nominal or baseline operating conditions in order to characterize the expected degradation in electrical performance as a function of life and to identify relevant failure mechanisms where possible. Accelerated aging is not included in the scope of this procedure, although the time compression resulting from continuous testing may unintentionally accelerate battery degradation unless test conditions are carefully controlled. The process used to define a test matrix of accelerated aging conditions based on failure mechanisms, and to establish statistical confidence levels for the results, is considered beyond the scope of this document. Because the intent is to use standard testing conditions whenever possible, results from the evaluation of different technologies should be comparable.
Standard

Electric-Drive Battery Pack System: Functional Guidelines

2021-08-03
CURRENT
J2289_202108
This SAE Information Report describes common practices for design of battery systems for vehicles that utilize a rechargeable battery to provide or recover all or some traction energy for an electric drive system. It includes product description, physical requirements, electrical requirements, environmental requirements, safety requirements, storage and shipment characteristics, and labeling requirements. It also covers termination, retention, venting system, thermal management, and other features. This document does describe guidelines in proper packaging of the battery to meet the crash performance criteria detailed in SAE J1766. Also described are the normal and abnormal conditions that may be encountered in operation of a battery pack system
Standard

Electric-Drive Battery Pack System: Functional Guidelines

2008-07-29
HISTORICAL
J2289_200807
This SAE Information Report describes common practices for design of battery systems for vehicles that utilize a rechargeable battery to provide or recover all or some traction energy for an electric drive system. It includes product description, physical requirements, electrical requirements, environmental requirements, safety requirements, storage and shipment characteristics, and labeling requirements. It also covers termination, retention, venting system, thermal management, and other features. This document does describe guidelines in proper packaging of the battery to meet the crash performance criteria detailed in SAE J1766. Also described are the normal and abnormal conditions that may be encountered in operation of a battery pack system
X