Refine Your Search




Search Results

Technical Paper

Vehicle Driving Cycle Simulation of a Pneumatic Hybrid Bus Based on Experimental Engine Measurements

In the study presented in this paper, a vehicle driving cycle simulation of the pneumatic hybrid has been conducted. The pneumatic hybrid powertrain has been modeled in GT-Power and validated against experimental data. The GT-Power engine model has been linked with a MATLAB/simulink vehicle model. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-power and it is based on the same engine configuration as the one used in real engine testing. During pneumatic hybrid operation the engine can be used as a 2-stroke compressor for generation of compressed air during vehicle deceleration and during vehicle acceleration the engine can be operated as a 2-stroke air-motor driven by the previously stored pressurized air.
Technical Paper

Variable Compression Ratio (VCR) Piston - Design Study

Variable compression ratio (VCR) technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. This paper presents a design of hydraulically actuated piston based on the VCR piston proposed by the British Internal Combustion Engine Research Institute (BICERI). In this design, the compression height of the piston automatically changes in response to engine cylinder pressure by controlling the lubrication oil flow via valves in the piston. In addition, numerical models including piston kinetic model, oil hydraulic model, compression ratio model and etc., have been established to evaluate the piston properties. The oil flow characteristics between two chambers in VCR piston have been investigated and the response behaviors of VCR engine and normal engine, such as compression pressure and peak cylinder pressure, are compared at different engine loads.
Technical Paper

Validation of a Self Tuning Gross Heat Release Algorithm

The present paper shows the validation of a self tuning heat release method with no need to model heat losses, crevice losses and blow by. Using the pressure and volume traces the method estimates the polytropic exponents (before, during and after the combustion event), by the use of the emission values and amount of fuel injected per cycle the algorithm calculates the total heat release. These four inputs are subsequently used for computing the heat release trace. The result is a user independent algorithm which results in more objective comparisons among operating points and different engines. In the present paper the heat release calculated with this novel method has been compared with the one computed using the Woschni correlation for modeling the heat transfer. The comparison has been made using different fuels (PRF0, PRF80, ethanol and iso-octane) making sweeps in relative air-fuel ratio, engine speed, EGR and CA 50.
Technical Paper

Using Oxygenated Gasoline Surrogate Compositions to Map RON and MON

Gasoline fuels are complex mixtures which consist of more than 200 different hydrocarbon species. In order to decrease the chemical and physical complexity, oxygenated surrogate components were used to enhance the fundamental understanding of partially premixed combustion (PPC). The ignition quality of a fuel is measured by octane number. There are two methods to measure the octane number: research octane number (RON) and motor octane number (MON). In this paper, RON and MON were measured for a matrix of n-heptane, isooctane, toluene, and ethanol (TERF) blends spanning a wide range of octane number between 60.6 and 97. First, regression models were created to derive RON and MON for TERF blends. The models were validated using the standard octane test for 17 TERF blends. Second, three different TERF blends with an ignition delay (ID) of 8 degrees for a specific operating condition were determined using a regression model.
Journal Article

Using Hythane as a Fuel in a 6-Cylinder Stoichiometric Natural-gas Engine

Combination of right EGR rates with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark-ignited natural gas engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. However dilution limit is limited in these types of engines because of the lower burnings rate of natural gas with higher EGR rates. One way to extend the dilution limit of a natural gas engine is to run the engine with Hythane (natural gas+ some percentage hydrogen). Previously benefits of hydrogen addition to a Lean Burn natural-gas fueled engine was investigated [1] however a complete study for stoichiometric operation was not performed. This paper presents measurements made on a heavy duty 6-cylinder natural gas engine.
Technical Paper

Transient Control of a Multi Cylinder HCCI Engine During a Drive Cycle

This study applies a state feedback based Closed-Loop Combustion Control (CLCC) using Fast Thermal Management (FTM) on a multi cylinder Variable Compression Ratio (VCR) engine. At speeds above 1500 rpm is the FTM's bandwidth broadened by using the VCR feature of this engine, according to a predefined map, which is a function of load and engine speed. Below 1500 rpm is the PID based CLCC using VCR applied instead of the FTM while slow cylinder balancing is effectuated by the FTM. Performance of the two CLCC controllers are evaluated during an European EC2000 drive cycle, while HC, CO and CO2 emissions are measured online by a Fast Response Infrared (FRI) emission equipment. A load and speed map calculated for an 1.6L Opel Astra is used to get reference values for the dynamometer speed and the load control. The drive cycle test is initiated from a hot engine and hence no cold start is included. Commercial RON/MON 92/82 gasoline, which corresponds to US regular, is utilized.
Technical Paper

Thermal Efficiency Comparison of Different Injector Constellations in a CI Engine

Towards the goal of high efficiency, heat losses through the cylinder walls need to be reduced for heavy-duty CI engines. This study proposes the use of multiple injectors to overcome this issue. Comparisons of one, two and three injectors’ utilizations are performed with optical and metal engines as well as CFD studies. Furthermore, a flat bowl is compared to the standard bowl in terms of performance and heat losses. It has earlier been proven that the distance from injector to the wall is significant in terms of heat loss reduction. A flat bowl increases this distance, and is thus, together with a smaller surface area, expected to reduce heat losses. Performance measures from the metal experiments proved the benefits of multiple injectors in terms of heat loss reduction and efficiency gain. The flat bowl further reduced the heat losses without adventuring the mixing capabilities. From the optical experiments, the spray and flame movements were evaluated.
Technical Paper

The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC

Partially premixed combustion has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions, even at higher loads. The problem is the ignitability at low load and idle operating conditions. The objective is to investigate the usefulness of negative valve overlap on a light duty diesel engine running with gasoline partially premixed combustion at low load operating conditions. The idea is to use negative valve overlap to trap hot residual gases to elevate the global in-cylinder temperature to promote auto-ignition of the high octane number fuel. This is of practical interest at low engine speed and load operating conditions because it can be assumed that the available boost is limited. The problem with NVO at low load operating conditions is that the exhaust gas temperature is low.
Technical Paper

The Potential of Using the Ion-Current Signal for Optimizing Engine Stability - Comparisons of Lean and EGR (Stoichiometric) Operation

Ion current measurements can give information useful for controlling the combustion stability in a multi-cylinder engine. Operation near the dilution limit (air or EGR) can be achieved and it can be optimized individually for the cylinders, resulting in a system with better engine stability for highly diluted mixtures. This method will also compensate for engine wear, e.g. changes in volumetric efficiency and fuel injector characteristics. Especially in a port injected engine, changes in fuel injector characteristics can lead to increased emissions and deteriorated engine performance when operating with a closed-loop lambda control system. One problem using the ion-current signal to control engine stability near the lean limit is the weak signal resulting in low signal to noise ratio. Measurements presented in this paper were made on a turbocharged 9.6 liter six cylinder natural gas engine with port injection.
Technical Paper

The Physical and Chemical Effects of Fuel on Gasoline Compression Ignition

In the engine community, gasoline compression ignition (GCI) engines are at the forefront of research and efforts are being taken to commercialize an optimized GCI engine in the near future. GCI engines are operated typically at Partially Premixed Combustion (PPC) mode as it offers better control of combustion with improved combustion stability. While the transition in combustion homogeneity from convectional Compression Ignition (CI) to Homogenized Charge Compression Ignition (HCCI) combustion via PPC has been comprehensively investigated, the physical and chemical effects of fuel on GCI are rarely reported at different combustion modes. Therefore, in this study, the effect of physical and chemical properties of fuels on GCI is investigated. In-order to investigate the reported problem, low octane gasoline fuels with same RON = 70 but different physical properties and sensitivity (S) are chosen.
Technical Paper

The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion

The different roles played by small and large eddies in engine combustion were studied. Experiments compared natural gas combustion in a converted, single cylinder Volvo TD 102 engine and in a 125 mm cubical cell. Turbulence is used to enhance flame growth, ideally giving better efficiency and reduced cyclic variation. Both engine and test cell results showed that flame growth rate correlated best with the level of high frequency, small eddy turbulence. The more effective, small eddy turbulence also tended to lower cyclic variations. Large scales and bulk flows convected the flame relative to cool surfaces and were most important to the initial flame kernel.
Technical Paper

The HCCI Combustion Process in a Single Cycle - Speed Fuel Tracer LIF and Chemiluminescence Imaging

The Homogeneous Charge Compression Ignition (HCCI) combustion progress has been characterized by means of high-speed fuel tracer Planar Laser Induced Fluorescence (PLIF) combined with simultaneous chemiluminescence imaging. Imaging has been conducted using a high-speed laser and detector system. The system can acquire a sequence of eight images within less than one crank angle. The engine was run at 1200 rpm on iso-octane or ethanol and a slight amount of acetone was added as a fuel tracer, providing a marker for the unburned areas. The PLIF sequences showed that, during the first stage of combustion, a well distributed decay of fuel concentration occurs. During the later parts of the combustion process the fuel concentration images present much more structure, with distinct edges between islands of unburned fuel and products.
Technical Paper

The Effect of Displacement on Air-Diluted Multi-Cylinder HCCI Engine Performance

The main benefit of HCCI engines compared to SI engines is improved fuel economy. The drawback is the diluted combustion with a substantially smaller operating range if not some kind of supercharging is used. The reasons for the higher brake efficiency in HCCI engines can be summarized in lower pumping losses and higher thermodynamic efficiency, due to higher compression ratio and higher ratio of specific heats if air is used as dilution. In the low load operating range, where HCCI today is mainly used, other parameters as friction losses, and cooling losses have a large impact on the achieved brake efficiency. To initiate the auto ignition of the in-cylinder charge a certain temperature and pressure have to be reached for a specific fuel. In an engine with high in-cylinder cooling losses the initial charge temperature before compression has to be higher than on an engine with less heat transfer.
Technical Paper

Technologies for Carbon-Neutral Passenger Transport - a Comparative Analysis

Road transport has become a large source of CO2 emission and accounted in 1998 for about 27% of the CO2 emission in Sweden. Efficient energy use and the use of renewable energy sources are main options for reducing CO2 emission from vehicles in the future. In this study, the use of energy carriers based on renewable energy sources in battery-powered electric vehicles (BPEVs), fuel-cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs) and internal combustion engine vehicles (ICEVs) is compared regarding energy efficiency, emission and cost. The cost calculations include energy, environmental and vehicle costs. The potential for non-technical measures to contribute to a reduction of road transport CO2 emission is also briefly discussed and related to the potential for technical measures. There is the potential to double the primary energy efficiency compared with the current level by utilizing vehicles with electric drivetrains.
Technical Paper

System Simulations to Evaluate the Potential Efficiency of Humid Air Motors

In the quest for efficiency improvement in heavy duty truck engines, waste heat recovery could play a valuable role. The evaporative cycle is a waste heat recovery technology aimed at improving efficiency and decreasing emissions. A humid air motor (HAM) uses the waste heat from the exhaust of the engine to humidify the inlet air; this humid air, with higher specific heat, reduces NOx emission to a greater extent [1] [2]. Despite this benefit of emission reduction, the increase or decrease in efficiency of the humid air motor compared to the conventional engine is not discussed in the literature [3] [4] [5]. In this paper, an attempt is made to study the efficiency of the HAM using system model simulations of a 13-liter heavy duty Volvo engine with a humidifier. The commercial software GT-SUITE is used to build the system model and to perform the simulations. The efficiency improvement of the HAM comes from the expansion of the vapor mass flow produced as a result of humidification.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition (HCCI) with Exhaust Gas Recirculation and Pilot Fuel

In an attempt to extend the upper load limit for Homogeneous Charge Compression Ignition (HCCI), supercharging in combination with Exhaust Gas Recirculation (EGR) have been applied. Two different boost pressures were used, 1.1 bar and 1.5 bar. High EGR rates were used in order to reduce the combustion rate. The highest obtained IMEP was 16 bar. This was achieved with the higher boost pressure, at close to stoichiometric conditions and with approximately 50 % EGR. Natural gas was used as the main fuel. In the case with the higher boost pressure, iso-octane was used as pilot fuel, to improve the ignition properties of the mixture. This made it possible to use a lower compression ratio and thereby reducing the maximum cylinder pressure. The tests were performed on a single cylinder engine operated at low speed (1000 rpm). The test engine was equipped with a modified cylinder head, having a Variable Compression Ratio (VCR) mechanism.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition

The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the reciprocating engine. Here, a homogeneous charge is used as in a spark ignited engine, but the charge is compressed to auto-ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine, HCCI has a homogeneous charge and hence no problems associated with soot and NOX formation. Earlier research on HCCI showed high efficiency and very low amounts of NOX, but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP values with HCCI, the limit being 5 bar. Supercharging is one way to dramatically increase IMEP. The influence of supercharging on HCCI was therefore experimentally investigated. Three different fuels were used during the experiments: iso-octane, ethanol and natural gas.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Technical Paper

Study on Combustion Chamber Geometry Effects in an HCCI Engine Using High-Speed Cycle-Resolved Chemiluminescence Imaging

The aim of this study is to see how geometry generated turbulence affects the Rate of Heat Release (ROHR) in an HCCI engine. HCCI combustion is limited in load due to high peak pressures and too fast combustion. If the speed of combustion can be decreased the load range can be extended. Therefore two different combustion chamber geometries were investigated, one with a disc shape and one with a square bowl in piston. The later one provokes squish-generated gas flow into the bowl causing turbulence. The disc shaped combustion chamber was used as a reference case. Combustion duration and ROHR were studied using heat release analysis. A Scania D12 Diesel engine, converted to port injected HCCI with ethanol was used for the experiments. An engine speed of 1200 rpm was applied throughout the tests. The effect of air/fuel ratio and combustion phasing was also studied.
Journal Article

Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF

In this work the pre- to main chamber ignition process is studied in a Wärtsilä 34SG spark-ignited lean burn four-stroke large bore optical engine (bore 340 mm) operating on natural gas. Unburnt and burnt gas regions in planar cross-sections of the combustion chamber are identified by means of planar laser induced fluorescence (PLIF) from acetone seeded to the fuel. The emerging jets from the pre-chamber, the ignition process and early flame propagation are studied. Measurements reveal the presence of a significant temporal delay between the occurrence of a pressure difference across the pre-chamber holes and the appearance of hot burnt/burning gases at the nozzle exit. Variations in the delay affect the combustion timing and duration. The combustion rate in the pre-chamber does not influence the jet propagation speed, although it still has an effect on the overall combustion duration.