Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Yaw/Roll Stability Modeling and Control of HeavyTractor-SemiTrailer

This paper sets up a simplified dynamic model for simulating the yaw/roll stability of heavy tractor-semitrailer using Matlab/Simulink. A linear quadratic regulator (LQR) based on partial-state feedback controller is used to optimize the roll stability of the vehicle. The control objective for optimizing roll stability is to be reducing the lateral load transfer rate while keeping the suspension angle less than the maximum allowable angle. The simulation result shows that the LQR controller is effective in the active roll stability control of the heavy tractor-semitrailer.
Technical Paper

Vehicle Mass Estimation for Heavy Duty Vehicle

Aiming at estimating the vehicle mass and the position of center of gravity, an on-line two-stage estimator, based on the recursive least square method, is proposed for buses in this paper. Accurate information of the center of gravity position is crucial to vehicle control, especially for buses whose center of gravity position can be varied substantially because of the payload onboard. Considering that the buses start and stop frequently, the first stage of the estimator determines the bus total mass during acceleration, and the second stage utilizes the recursive least-square methods to estimate the position of the center of gravity during braking. The proposed estimator can be validated by the co-simulation with MATLAB/Simulink and TruckSim software, simulation results exhibit good convergence and stability, so the center of gravity position can be estimated through the proposed method in a certain accuracy range.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.
Technical Paper

Traction Control Logic Based on Extended Kalman Filter for Omni-directional Electric Vehicle

Omni-directional electric vehicle built by our research group is an advanced electric vehicle whose four wheels can drive, steer and brake independently. The vehicle chassis system is composed of four in-wheel motors, four independent steer motors and electromagnetic brake system, and its control system is divided into logical control layer and underlying execution layer. The information exchange between these two layers is implemented by CAN bus. In this paper, the traction control logic for Omni-directional electric vehicle is developed. The study mainly involves two aspects: the vehicle states estimation and the traction control logic design. The vehicle states, including vehicle longitudinal velocity, lateral speed, side slip angle and yaw rate, etc, are estimated based on Extended Kalman Estimation and multiple degrees of freedom vehicle model.
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
Technical Paper

Research on the Dynamic Integration Control for Distributed-Traction Electric Vehicle with Four-Wheel-Distributed Steering System

With rapid development of the automobile industry and the growing maturity of the automotive electronic technologies, the distributed-traction electric vehicle with four-wheel-distributed steering/braking/traction systems is regarded as an important development direction. With its unique chassis structure, it is the ideal benchmark platform used to evaluate active safety systems. The distributed-traction electric vehicle with four-wheel-distributed steering system is essentially full drive-by-wire vehicle. With its flexible chassis layout and high control degrees-of-freedom, the full drive-by-wire electric vehicle acted as a kind of redundant system is an ideal platform for the research of integrated control. In this treatise, the longitudinal dynamics of the electric vehicle as well as its lateral and yaw motions are controlled simultaneously.
Technical Paper

Research on Vehicle Height Adjustment Control of Electronically Controlled Air Suspension

Electronically controlled air suspension (ECAS) systems have been widely used in commercial vehicles to improve the ride comfort and handling stability of vehicles, as it can adjust vehicle height according to the driving conditions and the driver's intent. In this paper, the vehicle height adjustment process of ECAS system is studied. A mathematical model of vehicle height adjustment is derived by combining vehicle dynamics theory and thermodynamics theory of variable mass system. Reasons lead to the problems of “over-charging”, “over-discharging” and oscillation during the process of height adjustment are analyzed. In order to solve these problems, a single neuron proportional-integral-derivative (PID) controller is proposed to realize the accurate control of vehicle height. By simulation and semi-physical rig test, the effectiveness and performance of the proposed control algorithm are verified.
Technical Paper

Passive Fault-Tolerant Performance of 4WID/4WIS Electric Vehicles Based on MPC and Control Allocation

The passive fault-tolerant performance of the integrated vehicle controller (IVC) applied on 4WID/4WIS Electric Vehicles has been investigated in this study. The 4WID/4WIS EV is driven independently by four in-wheel motors and steered independently by four steering motors. Thanks to increased control flexibility of the over-actuated architecture, Control Allocation (CA) can be applied to control the 4WID/4WIS EVs so as to improve the handling and stability. Another benefit of the over-actuated architecture is that the 4WID/4WIS Electric Vehicle has sufficient redundant actuators to fight against the safety critical situation when one or more actuators fail.
Technical Paper

Development of Active Control Strategy for Flat Tire Vehicles

This paper first presents an algorithm to detect tire blowout based on wheel speed sensor signals, which either reduces the cost for a TPMS or provides a backup in case it fails, and a tire blowout model considering different tire pressure is also built based on the UniTire model. The vehicle dynamic model uses commercial software CarSim. After detecting tire blowout, the active braking control, based on a 2DOF reference model, determines an optimal correcting yaw moment and the braking forces that slow down and stop the vehicle, based on a linear quadratic regulator. Then the braking force commands are further translated into target pressure command for each wheel cylinder to ensure the target braking forces are generated. Some simulations are conducted to verify the active control strategy.
Journal Article

Bilateral Control Method of Torque Drive/Angle Feedback Used for Steer-by-Wire System

Steer-by-Wire system is capable of improving the performance of vehicle handling and stability, and assisting driving. It becomes a key technique to control front wheel angle and simulate the steering resistance delivered to the driver because of removing mechanical linkages between the steering wheel and the front wheels. This paper proposes a bilateral control method of steering wheel torque drive/pinion angle feedback, which is disaccustomed of controlling steering wheel block and steering actuator as master-slave plants. The pinion angle, steering wheel angle and its torque signals are used in the control logic without estimating or measuring the tire/road force. Simulations and vehicle experiments proceeded with this proposed method and the results confirmed that it achieves the bilateral control of the position and torque between the two plants.
Journal Article

Based on the Unscented Kalman Filter to Estimate the State of Four-Wheel-Independent Electric Vehicle with X-by-Wire

As a new form of electric vehicle, Four-wheel-independent electric vehicle with X-By-Wire (XBW) inherits all the advantages of in-wheel motor drive electric vehicles. The vehicle steering system is liberated from traditional mechanical steering mechanism and forms an advanced vehicle with all- wheel independent driving, braking and steering. Compared with conventional vehicles, it has more controllable degrees of freedom. The design of the integrated vehicle dynamics control systems helps to achieve the steering, driving and braking coordinated control and improves the vehicle's handling stability. In order to solve the problem of lacking of vehicle state information in the integrated control, some methods are used to estimate the vehicle state of four-wheel-independent electric vehicles with XBW. In order to improve the estimation accuracy, unscented Kalman filter (UKF) is used to estimate the vehicle state variables in this paper.
Technical Paper

An Integrated Control Strategy Towards Improvement of Vehicle Ride and Handling via Active Suspension

An integrated control strategy for vehicle active suspension system which combines linear quadratic optimum control law with fuzzy control algorithm is designed to improve both ride and handling. The performance of this control strategy is then examined and assessed in an open-loop J-turn driving scenario on a random-rough road by means of computer simulation. Comparisons to a passive suspension system in terms of vehicle sprung mass vertical acceleration, body roll angle and yaw rate is conducted. Simulation results indicate that the integrated control strategy proposed in this paper could effectively enhance vehicle ride comfort meanwhile benefit handling quality and driving safety.
Journal Article

Actuator Fault Detection and Diagnosis of 4WID/4WIS Electric Vehicles

A fault detection and diagnosis (FDD) algorithm of 4WID/4WIS Electric Vehicles has been proposed in this study aiming to find the actuator faults. The 4WID/4WIS EV is one of the promising architectures for electric vehicle designs which is driven independently by four in-wheel motors and steered independently by four steering motors. The 4WID/4WIS EVs have many potential abilities in advanced vehicle control technologies, but diagnosis and accommodation of the actuator faults becomes a significant issue. The proposed FDD approach is an important part of the active fault tolerant control (AFTC) algorithm. The main objective of the FDD approach is to monitor vehicle states, find the faulty driving motor and then feedback fault information to the controller which would adopt appropriate control laws to accommodate the post-fault vehicle control system.
Technical Paper

A Driver Direction Control Model and its Application in the Simulation of Driver-Vehicle-Road Closed-Loop System

The research of driver behavior characteristics has been a focus of vehicle handling and stability performance. With the driver preview effort, many different driver preview models of direction control have been proposed and the simulations of driver-vehicle-road closed-loop system made. But in the simulation, most of the conventional models have the same precondition that the road was simply described as a pre-given preview course. How to simulate the driver dynamically deciding vehicle preview course based on the real road circumstance is the key to the further research of the driver model. In this paper, a new driver direction control model is established, which is called the Optimal Preview Lateral Acceleration (OPLA) Model and divided into three sub-models: driver’s information identification model, driver’s fuzzy decision model of vehicle preview course and driver’s performance first-order correction model.