Refine Your Search


Search Results

Technical Paper

The Influence of Fuel Injection Pressure and Intake Pressure on Conventional and Low Temperature Diesel Combustion

The influence of fuel injection pressure and intake pressure on conventional and low temperature diesel combustion was investigated in a light duty diesel engine. The in-cylinder pressure and exhaust emissions were measured and analyzed in each operating condition. The two combustion regimes were classified in terms of intake oxygen concentrations, which were adjusted by varying the amount of exhaust gas recirculation. The fuel injection quantity and injection timing were fixed in order to minimize the influencing factors. Fuel injection pressures of 40 MPa and 120 MPa were used to verify the effect of the fuel injection pressure in both combustion regimes. The injection pressure significantly affected the combustion phase in the low temperature diesel combustion regime due to the longer premixing time relative to the conventional diesel combustion regime.
Technical Paper

The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions

The effects of charge dilution on low-temperature diesel combustion and emissions were investigated in a small-bore single-cylinder diesel engine over a wide range of injection timing. The fresh air was diluted with additional N2 and CO2, simulating 0 to 65% exhaust gas recirculation in an engine. Diluting the intake charge lowers the flame temperature T due to the reactant being replaced by inert gases with increased heat capacity. In addition, charge dilution is anticipated to influence the local charge equivalence ratio ϕ prior to ignition due to the lower O2 concentration and longer ignition delay periods. By influencing both ϕ and T, charge dilution impacts the path representing the progress of the combustion process in the ϕ-T plane, and offers the potential of avoiding both soot and NOx formation.
Technical Paper

The Effects of Two-Stage Fuel Injection on Dimethyl-ether (DME) Homogeneous Charge Compression Ignition Engine Combustion

Two-stage injection strategy was studied in dimethyl-ether homogeneous charge compression ignition engine combustion. An early direct injection, main injection, was applied to form a premixed charge followed by the second injection after the start of heat release. Experiments were carried out in a single-cylinder direct-injection diesel engine equipped with a common-rail injection system, and the combustion performance and exhaust emissions were tested with the various second injection timings and quantities. Engine speed was 1200 rpm, and the load was fixed at 0.2 MPa IMEP. Main injection timing for homogeneous mixture was fixed at −80 CAD, and the fuel quantity was adjusted to the fixed load. Second injection quantity was varied from 1 to 5 mg, and the timing was selected according to the heat release rate of the HCCI combustion without second injection.
Technical Paper

The Effects of Pilot Injection on Combustion in Dimethyl-ether (DME) Direct Injection Compression Ignition Engine

Dimethyl-ether combustion with pilot injection was investigated in a single cylinder direct injection diesel engine equipped with a common-rail injection system. Combustion characteristics and emissions were tested with dimethyl-ether and compared with diesel fuel. The main injection timing was fixed to have the best timings for maximum power output. The total injected fuel mass corresponded to a low heating value of 405 joules per cycle at 800 rpm. The fuel quantity and the injection timing of the pilot injection were varied from 8 to 20% of the total injected mass and from 50 to 10 crank angle degrees before the main injection timing, respectively. Ignition delay decreased with pilot injection. The effects of pilot injection were less significant with DME combustion than with diesel. Pilot injection caused the main combustion to increase in intensity resulting in decreased emissions of hydrocarbons, carbon monoxide and particulate matter.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

The Dual-Fueled Homogeneous Charge Compression Ignition Engine Using Liquefied Petroleum Gas and Di-methyl Ether

The combustion, knock characteristics and exhaust emissions in an engine were investigated under homogeneous charge compression ignition operation fueled with liquefied petroleum gas with regard to variable valve timing and the addition of di-methyl ether. Liquefied petroleum gas was injected at an intake port as the main fuel in a liquid phase using a liquefied injection system, while a small amount of di-methyl ether was also injected directly into the cylinder during the intake stroke as an ignition promoter. Different intake valve timings and fuel injection amount were tested in order to identify their effects on exhaust emissions, combustion and knock characteristics. The optimal intake valve open timing for the maximum indicated mean effective pressure was retarded as the λTOTAL was decreased. The start of combustion was affected by the intake valve open timing and the mixture strength (λTOTAL) due to the volumetric efficiency and latent heat of vaporization.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Journal Article

Strategy for Mode Transition between Low Temperature Combustion and Conventional Combustion in a Diesel Engine

Mode transition between low temperature combustion (LTC) and conventional combustion was performed by changing the exhaust gas recirculation (EGR) rate from 60% to 0% or vice versa in a light duty diesel engine. The indicated mean effective pressure (IMEP) before mode transition was set at 0.45 MPa, representing the maximum load of LTC in this research engine. Various engine operating parameters (rate of EGR change, EGR path length, and residual gas) were considered in order to investigate their influence on the combustion mode transition. The characteristics of combustion mode transition were analyzed based on the in-cylinder pressure and hydrocarbon (HC) emission of each cycle. The general results showed that drastic changes of power output, combustion noise, and HC emission occurred during the combustion mode transition due to the improper injection conditions for each combustion mode.
Technical Paper

Spray and Combustion of Diesel Fuel under Simulated Cold-Start Conditions at Various Ambient Temperatures

The spray and combustion of diesel fuel were investigated to provide a better understanding of the evaporation and combustion process under the simulated cold-start condition of a diesel engine. The experiment was conducted in a constant volume combustion chamber and the engine cranking period was selected as the target ambient condition. Mie scattering and shadowgraph techniques were used to visualize the liquid- and vapor-phase of the fuel under evaporating non-combustion conditions (oxygen concentration=0%). In-chamber pressure and direct flame visualization were acquired for spray combustion conditions (oxygen concentration=21%). The fuel was injected at an injection pressure of 30 MPa, which is the typical pressure during the cranking period.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

Operating Range of Low Temperature Diesel Combustion with Supercharging

Low temperature diesel combustion with a large amount of exhaust gas recirculation in a direct injection diesel engine was investigated. Tests were carried out under various engine speeds, injection pressures, injection timings, and injection quantities. Exhaust emissions and brake specific fuel consumption were measured at different torque and engine speed conditions. High rates of exhaust gas recirculation led to the simultaneous reduction of nitrogen oxide and soot emissions due to a lower combustion temperature than conventional diesel combustion. However, hydrocarbon and carbon monoxide emissions increased as the combustion temperature decreased because of incomplete combustion and the lack of an oxidation reaction. To overcome the operating range limits of low temperature diesel combustion, increased intake pressure with a modified turbocharger was employed.
Technical Paper

Operating Characteristics of DME-Gasoline Dual-fuel in a Compression Ignition Engine at the Low Load Condition

Combustion and emission characteristics were investigated in a compression ignition engine with dual-fuel strategy using dimethyl ether (DME) and gasoline. Experiments were performed at the low load condition corresponding to indicated mean effective pressure of 0.45 MPa. DME was directly injected into the cylinder and gasoline was injected into the intake manifold during the intake stroke. The proportion of DME in the total input energy was adjusted from 10% to 100%. DME DME injection timing was widely varied to investigate the effect of injection timing on the combustion phase. Injection pressure of DME was varied from 20 MPa to 60 MPa. Exhaust gas recirculation (EGR) was controlled from 0% to 60% to explore the effect of EGR on the combustion and emission characteristics. As DME proportion was decreased with the increased portion of gasoline, the combustion efficiency was decreased but thermal efficiency was increased.
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

Mode Transition between Low Temperature Combustion and Conventional Combustion with EGR and Injection Modulation in a Diesel Engine

Mode transition between low temperature combustion and conventional combustion was investigated in a direct injection diesel engine. Low temperature diesel combustion was realized by means of high exhaust gas recirculation rate (69~73%) and early injection timing (-28~ -16 crank angle degree after top dead center) compared with those (20% exhaust gas recirculation rate and -8 crank angle degree after top dead center) of conventional combustion. Tests were carried out at different engine speeds and injection pressures. Exhaust gas recirculation rate was changed transiently by controlling each throttle angle for fresh air and exhaust gas recirculation to implement mode transition. Various durations for throttle transition were applied to investigate the effect of speed change of exhaust gas recirculation rate on the characteristics of mode transition.
Technical Paper

Influence of the Injector Geometry at 250 MPa Injection in a Light-Duty Diesel Engine

This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.
Technical Paper

Influence of EGR and Pilot Injection on PCCI Combustion in a Single-Cylinder Diesel Engine

The effect of pilot injection and exhaust gas recirculation (EGR) on premixed charge compression ignition (PCCI) combustion was investigated in a single-cylinder direct-injection diesel engine with low engine speed and low load. The injection timing of PCCI combustion was fixed at 25 ~ 30 crank angle degree before top dead center (°CA BTDC) based on the ignition delay and power output. The level of oxides of nitrogen (NOx) emissions of PCCI combustion was 68% lower than that of conventional diesel combustion owing to the reduction of near-stoichiometric region which is well known as the main source of NOx formation. However, the indicated mean effective pressure (IMEP), hydrocarbon (HC), particulate matter (PM) and carbon monoxide (CO) emissions deteriorated compared with conventional diesel combustion because of early injection, advanced combustion phase and lowered combustion temperature. EGR has been applied to PCCI combustion.
Technical Paper

Improvement of Premixed Compression Ignition Combustion using Various Injector Configurations

Premixed compression ignition (PCI) combustion was implemented using advanced injection strategy and exhaust gas recirculation in a direct-injection single-cylinder diesel engine. The injection timing swept experiment using a baseline injector, which had an injection angle of 146° and 8 nozzle holes, obtained three types of combustion regime: conventional diesel combustion for an injection timing of 10° CA (crank angle) BTDC (before top dead center), PCI combustion for an injection timing of 40° CA BTDC and homogeneous charge compression ignition (HCCI) combustion for an injection timing of 80° CA BTDC. PCI combustion can be verified by burn duration analysis. The burn duration, which was defined as the period from 10% to 90% of the accumulated heat release, was very short in PCI combustion but not in the others. PCI combustion with an injection timing of 40° CA BTDC was achieved in a range of an exhaust gas recirculation (EGR) rate from 0% to around 40%.
Technical Paper

Hydraulic Simulation and Experimental Analysis of Needle Response and Controlled Injection Rate Shape Characteristics in a Piezo-driven Diesel Injector

The More precise control of the multiple-injection is required in common-rail injection system of direct injection diesel engine to meet the low NOx emission and optimal PM filter system. The main parameter for obtaining the multiple-injections is the mechanism controlling the injector needle energizing and movement. In this study, a piezo-driven diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code and to evaluate the effect of this control capability on spray formation processes. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results.
Technical Paper

Fuel Stratification in a Liquid-Phase LPG Injection Engine

To investigate the mixture distributions in an LPG engine with Liquid phase port injection for heavy duty vehicles, an optical single cylinder engine, which is optically accessible both in side and bottom view, and laser diagnostic system were incorporated to apply PLIF (planar laser induced fluorescence) technique. Acetone was used as a dopant in LPG fuel, which was excited by KrF excimer laser (248nm), and its fluorescence images were acquired with ICCD camera. The effects of fuel injection timing, swirl intensity and excess air ratio were investigated. For the case of open valve injection, favorable stratification of fuel, both in axial and radial direction, was clearly observed compared to the closed valve injection, where reverse stratification in axial direction was observed. At the Ricardo swirl ratio of 3.4, it was apparent that excessive axial stratification of fuel got dominant, which would lead to poor engine performances.
Technical Paper

Effects of Single and Double Post Injections on Diesel PCCI Combustion

In this study, single and double post injections were applied to diesel premixed charge compression ignition (PCCI) combustion to overcome the drawbacks those are high level of hydrocarbons (HC) and carbon monoxide (CO) emissions in a single-cylinder direct-injection diesel engine. The operating conditions including engine speed and total injection quantity were 1200 rpm and 12 mg/cycle, which are the representative of low engine speed and low load. The main injection timing of diesel PCCI combustion was set to 28 crank angle degree before top dead center (CAD BTDC). This main injection timing showed 32% lower level of nitric oxides (NOx) level and 8 CAD longer ignition delay than those of conventional diesel combustion. However, the levels of HC and CO were 2.7 and 3 times higher than those of conventional diesel combustion due to over-lean mixture and wall wetting of fuel.