Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

2016-04-05
2016-01-0561
Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Technical Paper

Two-stage Fuel Direct Injection in a Diesel Fuelled HCCI Engine

2007-07-23
2007-01-1880
Two-stage fuel direct injection (DI) has the potential to expand the operating region and control the auto-ignition timing in a Diesel fuelled homogeneous charge compression ignition (HCCI) engine. In this work, to investigate the dual-injection HCCI combustion, a stochastic reactor model, based on a probability density function (PDF) approach, is utilized. A new wall-impingement sub-model is incorporated into the stochastic spray model for direct injection. The model is then validated against measurements for combustion parameters and emissions carried out on a four stroke HCCI engine. The initial results of our numerical simulation reveal that the two-stage injection is capable of triggering the charge ignition on account of locally rich fuel parcels under certain operating conditions, and consequently extending the HCCI operating range.
Journal Article

The Measurement of Penetration Length of Diesel Spray by Using Background Oriented Schlieren Technique

2011-04-12
2011-01-0684
The measurement of spray penetration length is one of crucial tasks for understanding the characteristics of diesel spray and combustion. For this reason, many researchers have devised various measurement techniques, including Mie scattering, schlieren photography, and laser induced exciplex fluorescence (LIEF). However, the requirements of expensive lasers, complicated optics, delicate setups, and tracers that affect fuel characteristics have been disadvantages of previous techniques. In this study, the background-oriented schlieren (BOS) technique is employed to measure the vapor penetration length of diesel spray for the first time. The BOS technique has a number of benefits over the previous techniques because of its quantitative, non-intrusive nature which does not require lasers, mirrors, optical filters, or fuel tracers.
Technical Paper

The Influence of Fuel Injection Pressure and Intake Pressure on Conventional and Low Temperature Diesel Combustion

2012-09-10
2012-01-1721
The influence of fuel injection pressure and intake pressure on conventional and low temperature diesel combustion was investigated in a light duty diesel engine. The in-cylinder pressure and exhaust emissions were measured and analyzed in each operating condition. The two combustion regimes were classified in terms of intake oxygen concentrations, which were adjusted by varying the amount of exhaust gas recirculation. The fuel injection quantity and injection timing were fixed in order to minimize the influencing factors. Fuel injection pressures of 40 MPa and 120 MPa were used to verify the effect of the fuel injection pressure in both combustion regimes. The injection pressure significantly affected the combustion phase in the low temperature diesel combustion regime due to the longer premixing time relative to the conventional diesel combustion regime.
Technical Paper

The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions

2005-10-24
2005-01-3837
The effects of charge dilution on low-temperature diesel combustion and emissions were investigated in a small-bore single-cylinder diesel engine over a wide range of injection timing. The fresh air was diluted with additional N2 and CO2, simulating 0 to 65% exhaust gas recirculation in an engine. Diluting the intake charge lowers the flame temperature T due to the reactant being replaced by inert gases with increased heat capacity. In addition, charge dilution is anticipated to influence the local charge equivalence ratio ϕ prior to ignition due to the lower O2 concentration and longer ignition delay periods. By influencing both ϕ and T, charge dilution impacts the path representing the progress of the combustion process in the ϕ-T plane, and offers the potential of avoiding both soot and NOx formation.
Technical Paper

The Fuel Economy Improvement through the Knock Margin Expansion in a Turbocharged Gasoline Direct Injection Engine

2018-09-10
2018-01-1671
Knocking combustion limits the downsized gasoline engines’ potential for improvement with regard to fuel economy. The high in-cylinder pressure and temperature caused by the adaptation of a turbocharger aggravates the tendency of the end-gas to autoignite. Thus, the knocking combustion does not allow for further advancing of the combustion phase. In this research, the effects of the ignition and valve timings on knocking combustion were investigated under steady-state conditions. Moreover, the optimal ignition and valve timings for the transient operations were derived with the aim of a greater fuel economy improvement, based on the steady-state analysis. A 2.0 liter turbocharged gasoline direct injection engine with continuously variable valve timing (CVVT), was utilized for this experiment. 2, 10, and 18 bar brake mean effective pressure (BMEP) load conditions were used to represent the low, medium, and high load operations, respectively.
Technical Paper

The Efficiency and Emission Characteristics of Dual Fuel Combustion Using Gasoline Direct Injection and Ethanol Port Injection in an SI Engine

2014-04-01
2014-01-1208
Ethanol, one of the most widely used biofuels, has the potential to increase the knock resistance of gasoline and decrease harmful emissions when blended with gasoline. However, due to the characteristics of ethanol, a trade-off relationship between knock tolerance and BSFC exists which is balanced by the blending ratio of gasoline and ethanol. Furthermore, in a spark-ignited engine, it is reported that the blending ratio that maximizes thermal efficiency varies based on the engine operating conditions. Therefore, an injection system that can deliver gasoline and ethanol separately is needed to fully exploit the benefit of ethanol. In this study, PFI injectors and a DI injector are used to deliver ethanol and gasoline, respectively. Using the dual fuel injection system, the compression ratio was increased from 9.5 to 13.3, and the knock mitigation characteristics at the full load condition were examined.
Technical Paper

The Effects of Two-Stage Fuel Injection on Dimethyl-ether (DME) Homogeneous Charge Compression Ignition Engine Combustion

2009-09-13
2009-24-0104
Two-stage injection strategy was studied in dimethyl-ether homogeneous charge compression ignition engine combustion. An early direct injection, main injection, was applied to form a premixed charge followed by the second injection after the start of heat release. Experiments were carried out in a single-cylinder direct-injection diesel engine equipped with a common-rail injection system, and the combustion performance and exhaust emissions were tested with the various second injection timings and quantities. Engine speed was 1200 rpm, and the load was fixed at 0.2 MPa IMEP. Main injection timing for homogeneous mixture was fixed at −80 CAD, and the fuel quantity was adjusted to the fixed load. Second injection quantity was varied from 1 to 5 mg, and the timing was selected according to the heat release rate of the HCCI combustion without second injection.
Technical Paper

The Effects of Spray Angle and Piston Bowl Shape on Diesel Engine Soot Emissions Using 3-D CFD Simulation

2005-05-11
2005-01-2117
In an HSDI Diesel engine, fuel can be injected to the combustion chamber earlier as a strategy to reduce NOx and soot emissions. However, in the case of early injection the in-cylinder pressure and temperature during injection are much lower than those of normal injection conditions. As a result, wall impingement can occur if the conventional spray angle and piston bowl shape are maintained. In this study, 3-D CFD simulation was used to modify the spray angle of the injector and the piston bowl shape so that wall impingement was minimized, and soot emissions were reduced. The wall impingement model was used to simulate the behavior of impinged droplets. In order to predict the performance and emissions of the engine, a flamelet combustion model with the kinetic chemical mechanism for NOx and soot was used. A reduction in soot emissions was achieved with the modification of the spray angle and piston bowl shape.
Technical Paper

The Effects of Spark Timing and Equivalence Ratio on Spark-Ignition Linear Engine Operation with Liquefied Petroleum Gas

2012-04-16
2012-01-0424
A prototype of a small, spark-ignition free-piston engine combined with a linear alternator was designed to produce electric power for portable usage. It has a bore size of 25 mm and maximum stroke of 22 mm. The engine was fueled with liquefied petroleum gas consisting of 98% propane. The electric power generated by the linear alternator is a function of the piston dynamics and the electric conductance. Therefore, the purpose of current research is to investigate the effects of the basic engine controlling parameters such as the equivalence ratio of the mixture and the spark timing on the piston dynamics and study the relationship with the electric power generation performance. The equivalence ratio of the mixture was varied from 1.0 to 1.72, while the spark timing was varied at 3, 4, and 5 mm away from the maximum top dead center. Operating characteristics, namely, indicated mean effective pressure, electric power output, operating frequency and piston stroke were analyzed.
Technical Paper

The Effects of Pilot Injection on Combustion in Dimethyl-ether (DME) Direct Injection Compression Ignition Engine

2007-09-16
2007-24-0118
Dimethyl-ether combustion with pilot injection was investigated in a single cylinder direct injection diesel engine equipped with a common-rail injection system. Combustion characteristics and emissions were tested with dimethyl-ether and compared with diesel fuel. The main injection timing was fixed to have the best timings for maximum power output. The total injected fuel mass corresponded to a low heating value of 405 joules per cycle at 800 rpm. The fuel quantity and the injection timing of the pilot injection were varied from 8 to 20% of the total injected mass and from 50 to 10 crank angle degrees before the main injection timing, respectively. Ignition delay decreased with pilot injection. The effects of pilot injection were less significant with DME combustion than with diesel. Pilot injection caused the main combustion to increase in intensity resulting in decreased emissions of hydrocarbons, carbon monoxide and particulate matter.
Technical Paper

The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in SI Engines

1994-03-01
940306
To understand the effects of crevices on the engine-out hydrocarbon emissions, a series of engine experiments was carried out with different piston crevice volumes and with simulated head gasket crevices. The engine-out HC level was found to be modestly sensitive to the piston crevice size in both the warmed-up and the cold engines, but more sensitive to the crevice volume in the head gasket region. A substantial decrease in HC in the cold-to-warm-up engine transition was observed and is attributed mostly to the change in port oxidation.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

The Effect of Liquid Fuel on the Cylinder Liner on Engine-Out Hydrocarbon Emissions in SI Engines

2001-09-24
2001-01-3489
The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz cylinder liner in an SI engine test rig. In addition, comparing visualization results with the trend of hydrocarbon emissions in this engine, the effect of cylinder wall-wetting during a simulated cold start and warmed-up condition was investigated with the engine experiment. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized.
Technical Paper

The Effect of LPG Composition on Combustion and Performance in a DME-LPG Dual-fuel HCCI Engine

2010-04-12
2010-01-0336
The effect of the composition of propane (C₃H₈) and butane (C₄H₁₀) in liquefied petroleum gas (LPG) was investigated in a dual-fuel HCCI engine fueled with di-methyl ether (DME) and LPG. The composition of LPG affects DME-LPG dual fuel HCCI combustion due to the difference in the physical properties of propane that and butane such as octane number, auto-ignition temperature and heat of vaporization. DME was injected directly into the cylinder at various injection timing from 160 to 350 crank angle degrees (CAD). LPG was injected at the intake port with a fixed injection timing at 20 CAD. It was found that power output was increased with propane ratio. This gain in power output resulted from increased expansion work due to the better anti-knock properties of propane. However, higher propane ratio made combustion efficiency decrease because of the suppression in low temperature reaction of DME which determines heat release amount of high temperature reaction.
Technical Paper

The Effect of Injection Location of DME and LPG in a Dual Fuel HCCI Engine

2009-06-15
2009-01-1847
Dimethyl ether (DME) as a high cetane number fuel and liquefied petroleum gas (LPG) as a high octane number fuel were supplied together to evaluate the controllability of combustion phase and improvement of power and exhaust emission in homogeneous charge compression ignition (HCCI) engine. Each fuel was injected at the intake port and in the cylinder separately during the same cycle, i.e., DME in the cylinder and LPG at the intake port, or vice versa. Direct injection timing was varied from 200 to 340 crank angle degree (CAD) while port injection timing was fixed at 20 CAD. In general, the experimental results showed that DME direct injection with LPG port injection was the better way to increase the IMEP and reduce emissions. The direct injection timing of high cetane number fuel was important to control the auto-ignition timing because the auto-ignition was occurred at proper area, where the air and high cetane number fuel were well mixed.
Technical Paper

The Effect of Ethanol Injection Strategy on Knock Suppression of the Gasoline/Ethanol Dual Fuel Combustion in a Spark-Ignited Engine

2015-04-14
2015-01-0764
Ethanol is becoming more popular as a fuel component for spark-ignited engines. Ethanol can be used either as an octane enhancer of low RON gasoline or splash-blended with gasoline if a single injector is used for fuel injection. If two separate injectors are used, it is possible to inject gasoline and ethanol separately and the addition of ethanol can be varied on demand. In this study, the effect of the ethanol injection strategy on knock suppression was observed using a single cylinder engine equipped with two port fuel injectors dedicated to each side of the intake port and one direct injector. If the fuel is injected to only one side of the intake port, it is possible to form a stratified charge. The experiment was conducted under a compression ratio of 12.2 for various injection strategies.
Technical Paper

The Effect of Engine Parameters on In-Cylinder Pressure Reconstruction from Vibration Signals Based on a DNN Model in CNG-Diesel Dual-Fuel Engine

2023-04-11
2023-01-0861
In marine or stationary engines, consistent engine performance must be guaranteed for long-haul operations. A dual-fuel combustion strategy was used to reduce the emissions of particulates and nitrogen oxides in marine engines. However, in this case, the combustion stability was highly affected by environmental factors. To ensure consistent engine performance, the in-cylinder pressure measured by piezoelectric pressure sensors is generally measured to analyze combustion characteristics. However, the vulnerability to thermal drift and breakage of sensors leads to additional maintenance costs. Therefore, an indirect measurement via a reconstruction model of the in-cylinder pressure from engine block vibrations was developed. The in-cylinder pressure variation is directly related to the block vibration; however, numerous noise sources exist (such as, valve impact, piston slap, and air flowage).
Technical Paper

The Dual-Fueled Homogeneous Charge Compression Ignition Engine Using Liquefied Petroleum Gas and Di-methyl Ether

2007-08-05
2007-01-3619
The combustion, knock characteristics and exhaust emissions in an engine were investigated under homogeneous charge compression ignition operation fueled with liquefied petroleum gas with regard to variable valve timing and the addition of di-methyl ether. Liquefied petroleum gas was injected at an intake port as the main fuel in a liquid phase using a liquefied injection system, while a small amount of di-methyl ether was also injected directly into the cylinder during the intake stroke as an ignition promoter. Different intake valve timings and fuel injection amount were tested in order to identify their effects on exhaust emissions, combustion and knock characteristics. The optimal intake valve open timing for the maximum indicated mean effective pressure was retarded as the λTOTAL was decreased. The start of combustion was affected by the intake valve open timing and the mixture strength (λTOTAL) due to the volumetric efficiency and latent heat of vaporization.
X