Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Validation of 1D and 3D Analyses for Performance Prediction of an Automotive Silencer

2011-09-11
2011-24-0217
One dimensional (1D) and three dimensional (3D) simulations are widely used in technical acoustics to predict the behavior of duct system elements including fluid machines. In particular, referring to internal combustion engines, the numerical approaches can be used to estimate the Transmission Loss (TL) of mufflers, air boxes, catalytic converters, etc. TL is a parameter commonly used in almost any kind of acoustical filters, in order to assess the passive effects related to their sound attenuation. In this paper, a previous 1D-3D acoustical analysis of a commercial muffler, has been improved and experimentally validated. Features related to the manufacturing process, like the coupling of adjacent surfaces and the actual shape of components, have been noticed to heavily affect the muffler behavior.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

2011-09-11
2011-24-0138
Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Theoretical and Experimental Investigation of the Matching Between an I.C.E. and a Turbocharger

1990-09-01
901601
The authors present a method for turbocharged I.C.E. analysis, based upon an unsteady non-dimensional flow-model, whose accuracy level has been improved by means of experimental investigations. Experimental activities allowed a higher prediction level to be reached for both engine cycles and turbocharger operation. The results are also compared with those of an experimental methodology recently proposed by the authors, based upon one-dimensional unsteady flow models and fast pressure data acquisition. The method is mainly utilized, in this paper, as to compare the effects of two different turbochargers on engine performance and turbomachinery operating conditions. The engine and turbocharger matching is considered under both steady and transient conditions.
Technical Paper

The Use of Vibrational Signals for On-Board Knock Diagnostics Supported by In-Cylinder Pressure Analyses

2014-11-11
2014-32-0063
In the present work, an Auto Regressive Moving Average (ARMA) model and a Discrete Wavelet Transform (DWT) are applied on vibrational signals, acquired by an accelerometer placed on the cylinder block of a Spark Ignition (SI) engine, for knock detection purposes. To the aim of tuning such procedures, the same analysis has been carried out by using the traditional MAPO (Maximum Amplitude of Pressure Oscillations) index and an Inverse Kinetic Model (IKM), both applied on the in-cylinder pressure signals. Vibrational and in-cylinder pressure signals have been collected on a four cylinder, four stroke engine, for different engine speeds, load conditions and spark advances. The results of the two vibrational based methods are compared and in depth discussed to the aim of highlighting the pros and cons of each methodology.
Technical Paper

Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection

2018-05-30
2018-37-0008
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-Power™), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers.
Journal Article

Strategies for Improving Fuel Consumption at Part-Load in a Downsized Turbocharged SI Engine: a Comparative Study

2014-04-01
2014-01-1064
It is commonly recognized that the paths for improving fuel consumption (BSFC) in a spark-ignition engine at part-load require more advanced valve actuation strategies, which largely affect the pumping work. Since several years, many different solutions have been proposed, characterized by different levels of complexity, effectiveness, and cost. Valve systems currently available on the market allow for variable phasing (VVT - Variable Valve Timing), and/or lift (VVA - Variable Valve Actuation). Usually VVT devices are applied on intake and exhaust camshafts, in the “phased” or “unphased” configuration, as well. VVA devices are instead commonly mounted on the intake camshaft. More recent VVA systems also allow for a double intake valve lift during a single engine cycle (multi-lift), or may include a small intake pre-lift during the exhaust stroke. The latter solutions may determine further BSFC reductions. Alternatively, an external-EGR circuit can be considered, as well.
Technical Paper

Steady and Unsteady Modeling of Turbocharger Compressors for Automotive Engines

2010-05-05
2010-01-1536
Turbocharging technique will play a fundamental role in the near future not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions both in Spark Ignition and Compression Ignition engines. To this end, one-dimensional (1D) modelling is usually employed to compute the engine-turbocharger matching, to select the boost level in different operating conditions and to estimate low end torque level and transient response. However, 1D modeling of a turbocharged engine requires the availability of the turbine and compressor characteristic maps. This leads to some typical drawbacks: performance maps of the turbocharger device are usually limited to a reduced number of rotational speeds, pressure ratios and mass flow rates.
Technical Paper

Second Law Analysis of Turbocharged Engine Operation

1991-02-01
910418
In this paper the turbocharged diesel engine operation is analyzed by means of a second law based method. The instantaneous release and storage of availability inside the several components (cylinders, manifolds, compressor and turbine) are evaluated by following a theoretical-experimental methodology that has been recently proposed by the authors. Examples of availability balances are compared for different values of some parameters which influence the combustion and the exhaust process, or for several arrangements of the engine and turbomachine system. The availability analysis of the engine transient development will show the amounts of mechanical energy employed for both in-cylinder storage and turbocharger acceleration and of those available for conversion into external output. These amounts will be compared with the fuel availability and with those destroyed during the several processes (i.e. combustion, gas exchange, turbocharger operation).
Technical Paper

Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part II: Model Concept, Validation and Discussion

2018-04-03
2018-01-0856
As known, reliable information about underlying turbulence intensity is a mandatory pre-requisite to predict the burning rate in quasi-dimensional combustion models. Based on 3D results reported in the companion part I paper, a quasi-dimensional turbulence model, embedded under the form of “user routine” in the GT-Power™ software, is here presented in detail. A deep discussion on the model concept is reported, compared to the alternative approaches available in the current literature. The model has the potential to estimate the impact of some geometrical parameters, such as the intake runner orientation, the compression ratio, or the bore-to-stroke ratio, thus opening the possibility to relate the burning rate to the engine architecture. Preliminarily, a well-assessed approach, embedded in GT-Power commercial software v.2016, is utilized to reproduce turbulence characteristics of a VVA engine.
Technical Paper

Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part I: 3D Analyses

2018-04-03
2018-01-0850
Recently, a growing interest in the development of more accurate phenomenological turbulence models is observed, since this is a key pre-requisite to properly describe the burn rate in quasi-dimensional combustion models. The latter are increasingly utilized to predict engine performance in very different operating conditions, also including unconventional valve control strategies, such as EIVC or LIVC. Therefore, a reliable phenomenological turbulence model should be able to physically relate the actuated valve strategy to turbulence level during the engine cycle, with particular care in the angular phase when the combustion takes place.
Technical Paper

Reducing Fuel Consumption, Noxious Emissions and Radiated Noise by Selection of the Optimal Control Strategy of a Diesel Engine

2011-09-11
2011-24-0019
Despite the recent efforts devoted to develop alternative technologies, it is likely that the internal combustion engine will remain the dominant propulsion system for the next 30 years and beyond. Also as a consequence of more and more stringent emissions regulations established in the main industrialized countries, strongly demanded are methods and technologies able to enhance the internal combustion engines performance in terms of both efficiency and environmental impact. Present work focuses on the development of a numerical method for the optimization of the control strategy of a diesel engine equipped with a high pressure injection system, a variable geometry turbocharger and an EGR circuit. A preliminary experimental analysis is presented to characterize the considered six-cylinder engine under various speeds, loads and EGR ratios.
Technical Paper

Pros and Cons of Using Different Numerical Techniques for Transmission Loss Evaluation of a Small Engine Muffler

2010-09-28
2010-32-0028
Automotive exhaust systems give a major contribution to the sound quality of a vehicle and must be properly designed in order to produce acceptable acoustic performances. Obviously, noise attenuation is strictly related to the used materials and to its internal geometry. This last influences the wave propagation and the gas-dynamic field. The purpose of this paper is to describe advantages and disadvantages of different numerical approaches in evaluating the acoustic performance in terms of attenuation versus frequency (Transmission Loss) of a commercial two perforated tube muffler under different conditions. At first, a one-dimensional analysis is performed through the 1D GTPower® code, solving the nonlinear flow equations which characterize the wave propagation phenomena. The muffler is characterized as a network of properly connected pipes and volumes starting from 3D CAD information. Then, two different 3D analyses are performed within the commercial STS VNOISE® code.
Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
Technical Paper

Performance and Emissions of an Advanced Multi-Cylinder SI Engine Operating in Ultra-Lean Conditions

2019-09-09
2019-24-0075
In this work the performance and noxious emissions of a prototype Spark Ignition (SI) engine, working in ultra-lean conditions, are investigated. It is a four-cylinder engine, having a very high compression ratio, and an active pre-chamber. The required amount of air is provided by a low-pressure variable geometry turbocharger, coupled to a high-pressure E-compressor. The engine is equipped with a variable valve timing device on the intake camshaft. The goal of this activity is to support the development and the calibration of the described engine, and to exploit the full potential of the ultra-lean concept. To this aim, a combustion model for a pre-chamber engine, set up and validated in a previous paper for a similar single-cylinder unit, is utilized. It is coupled to additional in-house developed sub-models, employed for the prediction of the in-cylinder turbulence, heat transfer, knock and pollutant emissions.
Journal Article

Numerical and Experimental Investigation of Fuel Effects on Knock Occurrence and Combustion Noise in a 2-Stroke Engine

2012-04-16
2012-01-0827
Knock occurrence is a widely recognized phenomenon to be controlled during the development and optimization of S.I. engines, since it bounds both compression ratio and spark advance, hence reducing the potential in gaining a lower fuel consumption. As a consequence, a clear understanding of the engine parameters affecting the onset of auto-ignition is mandatory for the engine setup. In view of the complexity of the phenomena, the use of combined experimental and numerical investigations is very promising. The paper reports such a combined activity, targeted at characterizing the combustion behavior of a small unit displacement two-stroke SI engine operated with either Gasoline or Natural Gas (CNG). In the paper, detailed multi-cycle 3D-CFD analyses, starting for preliminary 1D computed boundary conditions, are performed to accurately characterize the engine behavior in terms of scavenging efficiency and combustion.
Technical Paper

Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine

2017-09-04
2017-24-0015
Nowadays different technical solutions have been proposed to improve the performance of internal combustion engines, especially in terms of Brake Specific Fuel Consumption (BSFC). Its reduction of course contributes to comply with the CO2 emissions legislation for vehicle homologation. Concerning the spark ignition engines, the downsizing coupled to turbocharging demonstrated a proper effectiveness to improve the BSFC at part load. On the other hand, at high load, the above solution highly penalizes the fuel consumption mainly because of knock onset, that obliges to degrade the combustion phasing and/or enrich the air/fuel mixture. A promising technique to cope with the above drawbacks consists in the Variable Compression Ratio (VCR) concept. An optimal Compression Ratio (CR) selection, in fact, allows for further improvements of the thermodynamic efficiency at part load, while at high load, it permits to mitigate knock propensity, resulting in more optimized combustions.
Technical Paper

Noise Prediction of a Multi-Cylinder Engine Prototype Using Multi-Body Dynamic Simulation

2011-09-11
2011-24-0216
In the paper a coupled Multi-Body and FEM-BEM methodology used to predict the noise radiated by a turbocharged 4-cylinder diesel engine prototype is described. A Multi-Body Dynamic Simulation (MBDS) of the engine has been carried out, simulating an engine speed sweep from 1500 to 4000 rpm, in order to determine the excitation force of the powertrain, and in particular to estimate the forces acting on the cylinder block. Thanks to the Multi-Body approach, the dynamics of the engine powertrain have been described taking into account both the effects of the burnt gas pressure during the combustion process and the inertia forces of the moving parts. Moreover to assess the real engine operating behaviour, both the crank and the block have been considered as flexible bodies.
Journal Article

Map-Based and 1D Simulation of a Turbocharger Compressor in Surging Operation

2011-09-11
2011-24-0126
One-dimensional (1D) models are commonly employed to study the performances of turbocharged engine. Manufacturers' provided steady turbomachinery maps are usually utilized, although they operate in unsteady conditions as a consequence of pressure pulses propagating into the intake and exhaust systems. This may lead to some inaccuracies in the engine-turbocharger matching calculations, which may be solved through the introduction of proper time-delays (virtual pipe corrections). These drawbacks, however, became more relevant when engine operates under low speed and high load conditions, or during a transient maneuver, because of possibilities of compressor surging.
X