Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

Validation of an LES Multi Mode Combustion Model for Diesel Combustion

2010-04-12
2010-01-0361
Diesel engine combustion is simulated using Large Eddy Simulation (LES) with a multi-mode combustion (MMC) model. The MMC model is based on the combination of chemical kinetics, chemical equilibrium, and quasi-steady flamelet calculations in different local combustion regimes. The local combustion regime is identified by two combustion indices based on the local temperature and the extent of mixture homogeneity. The LES turbulence model uses the dynamic structure model (DSM) for sub-grid stresses. A new spray model in the LES context is used, and the Reynolds-averaged Navier-Stokes (RANS) based wall model is retained with the LES derived scales. These models are incorporated in the KIVA3V-ERC-Release 2 code for engine combustion simulations. A wide range of diesel engine operating conditions were chosen to validate the combustion model.
Technical Paper

Three Way Catalyst Modeling with Ammonia and Nitrous Oxide Kinetics for a Lean Burn Spark Ignition Direct Injection (SIDI) Gasoline Engine

2013-04-08
2013-01-1572
A Three-Way Catalyst (TWC) model with global TWC kinetics for lean burn DISI engines were developed and validated. The model incorporates kinetics of hydrocarbons and carbon monoxide oxidations, NOx reduction, water-gas and steam reforming and oxygen storage. Ammonia (NH₃) and new nitrous oxide (N₂O) kinetics were added into the model to study NH₃ and N₂O formation in TWC systems. The model was validated over a wide range of engine operating conditions using various types of experimental data from a lean burn automotive SIDI engine. First, well-controlled time-resolved steady state data were used for calibration and initial model tests. In these steady state operations, the engine was switched between lean and rich conditions for NOx emission control. Then, the model was further validated using a large set of time-averaged steady state data. Temperature dependencies of NH₃ and N₂O kinetics in the TWC model were examined and well captured by the model.
Journal Article

Study of the Deep-Bed Filtration Using Pore Filtration Model (PFM)

2018-04-03
2018-01-0956
To meet stringent emissions regulations, filtration devices are often used in engine exhaust systems to reduce particulate mass (PM) and particulate number (PN). Diesel particulate filters (DPFs) are a well-established means of reducing PM from diesel engines to meet emissions regulations. New emissions regulations will most likely require a similar technology on gasoline engines with direct injection, gasoline particulate filters (GPFs). Due to differences in the exhaust and particulate characteristics, the design and operation of GPFs and DPFs differ. In a DPF filtration is dominated by the buildup of a soot cake. Whereas in a GPF, much of the soot is trapped inside the porous substrate, or filter wall, where deep-bed filtration is dominant. Thus, an accurate model describing the porous filtration properties of GPF substrates is desired. The pore filtration model (PFM) was developed to more accurately model the deep-bed filtration process that occurs in a GPF.
Technical Paper

On LES Grid Criteria for Spray Induced Turbulence

2012-04-16
2012-01-0141
Using non-viscosity dynamic structure Large Eddy Simulations (LES) turbulence model, spray=induced turbulence is investigated on a number of different Computational Fluid Dynamics (CFD) grids of varying mesh sizes (from 0.5 to 2 mm mesh). Turbulent flow is induced inside a quiescent chamber by liquid fuel spray and then left to decay after end of injection by virtue of its molecular viscosity and turbulent dissipation. Coherent structures (CS) of this turbulent flow are constructed and visualized using λ2 definition. Using CS, analysis is performed on the turbulent flow around the liquid spray jet. These CS from LES are then compared against the results from RANS calculations as well. The visualization of CS helps to explain the mechanism of fuel-air mixing obtained from LES results and its difference with RANS calculations.
Technical Paper

Numerical Study of Diesel Combustion Regimes

2011-04-12
2011-01-0823
Numerical investigation is carried out in order to explore diesel combustion using advanced turbulence and combustion models. Turbulence is modeled by one-equation non-viscosity dynamic structure Large Eddy Simulation (LES) model. Sub-grid fuel-air mixing is calculated using a dynamic scale similarity sub-grid scalar dissipation model to represent the local state of combustion. Fuel-air mixing time scale is used in order to determine the local in-homogeneity and rate of mixing of fuel and air. Diesel combustion is studied and compared with experimental results for high power diesel engine setup at different conditions representing both low temperature combustion and traditional high temperature combustion regimes. Further studies are carried out in diesel engine to investigate in-cylinder fuel air mixing and the onset of ignition.
Technical Paper

Numerical Investigation of High Powered Diesel Mode Transition Using Large Eddy Simulations

2012-04-16
2012-01-0693
Numerical investigation is carried out to explore various strategies of combustion mode switching in a diesel engine operating at high power. Numerical results are compared with high power single cylinder (CAT 3401E) experiments for combustion phasing and emission characteristics. In this study CFD calculations are carried out using the KIVA CFD code with Large Eddy Simulation turbulence model and Direct Chemistry Solver sub-models. The advanced turbulence and combustion sub-models enabled more realistic visualization of the effects of single-cycle mode switching on in-cylinder flow structures, fuel-air mixing behavior and combustion phasing. Two circumstances of mode switch are presented in this study. Mode switches are performed from traditional High Temperature Combustion to early injection PCCI combustion and vice versa. In this investigation several aspects of combustion control are investigated.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Technical Paper

Modeling Ignition and Combustion in Spark-Ignition Engines Based on Swept-Volume Method

2018-04-03
2018-01-0188
A swept-volume method of calculating the volume swept by the flame during each time step is developed and used to improve the calculation of fuel reaction rates. The improved reaction rates have been applied to the ignition model and coupled with the level set G-equation combustion model. In the ignition model, a single initial kernel is formed after which the kernel is convected by the gas flow and its growth rate is determined by the flame speed and thermal expansion due to the energy transfer from the electrical circuit. The predicted ignition kernel size was compared with the available experimental data and good agreements were achieved. Once the ignition kernel reaches a size when the fully turbulent flame is developed, the G-equation model is switched on to track the mean turbulent flame front propagation.
Technical Paper

Model Based Study of DeNOx Characteristics for Integrated DPF/SCR System over Cu-Zeolite

2015-04-14
2015-01-1060
The SCR Filter simultaneously reduces NOx and Particle Matter (PM) in the exhaust and is considered an effective way to meet emission regulations. By combining the function of a Diesel Particulate Filtration (DPF) and a Selective Catalytic Reduction (SCR), the SCR Filter reduces the complexity and cost of aftertreatment systems in diesel vehicles. Moreover, it provides an effective reaction surface and potentially reduces backpressure by combining two devices into one. However, unlike traditional flow through type SCR, the deNOx reactions in the SCR Filter can be affected by the particulate filtration and regeneration process. Additionally, soot oxidation can be affected by the deNOx process. A 1-D kinetic model for integrated DPF and NH3-SCR system over Cu-zeolite catalysts was developed and validated with experimental data in previous work[1].
Journal Article

Large-Eddy Simulation of Turbulent Dispersion Effects in Direct Injection Diesel and Gasoline Sprays

2019-04-02
2019-01-0285
In most large-eddy simulation (LES) applications to two-phase engine flows, the liquid-air interactions need to be accounted for as source terms in the respective governing equations. Accurate calculation of these source terms requires the relative velocity “seen” by liquid droplets as they move across the flow, which generally needs to be estimated using a turbulent dispersion model. Turbulent dispersion modeling in LES is very scarce in the literature. In most studies on engine spray flows, sub-grid scale (SGS) models for the turbulent dispersion still follow the same stochastic approach originally proposed for Reynolds-averaged Navier-Stokes (RANS). In this study, an SGS dispersion model is formulated in which the instantaneous gas velocity is decomposed into a deterministic part and a stochastic part. The deterministic part is reconstructed using the approximate deconvolution method (ADM), in which the large-scale flow can be readily calculated.
Technical Paper

Large Eddy Simulation of Scalar Dissipation Rate in an Internal Combustion Engine

2010-04-12
2010-01-0625
A novel algebraic similarity model for subgrid scalar dissipation rate has been developed as part of the Large Eddy Simulation (LES) package KIVA3V-LES for diesel engine study. The model is proposed from an a priori study using Direct Numerical Simulation (DNS) of forced isotropic turbulence. In the a posteriori test, fully resolved turbulent passive scalar field measurements are used to validate the model in actual engine flows. For reason of the length limit by SAE and the specific interest in engine applications, only a prior test and a posteriori test in engine flows are included in this paper. A posteriori tests in isotropic cube flow, turbulent round jet and flame cases will be presented in separate papers. An engine LES simulation of multi consecutive cycles was performed in this study.
Technical Paper

Intake and In-Cylinder Flow Modeling Characterization of Mixing and Comparison with Flow Bench Results

1996-02-01
960635
A modified version of the three dimensional CFD code KIVA-3, which accommodates moving valves and a moving piston crown, has been applied to a heavy-duty, four cycle, dual intake valve, direct injection, diesel engine The fluid domain encompasses an intake runner, two valved ports and a cylinder with a Mexican hat bowl-in-piston configuration In the first part of the study, the modified KIVA-3 code was used to simulate the flow through the port and cylinder of the engine without a piston The intake valves were cycled (300 rpm at the camshaft) Two turbulence models were compared in this part of the study, standard k - ε and the RNG modified k - ε as discussed in [11] The results were compared to particle image velocimetry (PIV) images Large scale flow features of the computer simulations agreed moderately well with the ensemble averaged flow bench results There was very little difference between the results from the two turbulence models Motored engine simulations including a piston were conducted to characterize the in-cylinder gas flow and mixing during the intake and compression strokes Characterization methods were developed which yield insight into the in-cylinder gas motion and mixing during both strokes Intake and residual gases are tracked separately, both large scale convection and turbulent mixing are investigated, flow critical points are examined to provide information about flow topology and turbulence production is correlated with the evolution of flow structures Results show that mixing of the intake and residual gases is very non-uniform Many complex flow structures develop during intake and are destroyed during compression However, several structures survive through compression and contribute to enhanced mixing near top dead center These significant structures have been identified and tracked back to intake The flow field near top dead center exhibits spatial inhomogeneities in temperature and small scale mixing parameters such as turbulence kinetic energy and its dissipation rate
Journal Article

Effects of Numerical Schemes on Large Eddy Simulation of Turbulent Planar Gas Jet and Diesel Spray

2016-04-05
2016-01-0866
Three time integration schemes and four finite volume interpolation schemes for the convection term in momentum equation were tested under turbulent planar gas jet and Sandia non-reacting vaporizing Spray-H cases. The three time integration schemes are the first-order Euler implicit scheme, the second-order backward scheme, and the second-order Crank-Nicolson scheme. The four spatial interpolation schemes are cubic central, linear central, upwind, and vanLeer schemes. Velocity magnitude contour, centerline and radial mean velocity and Reynolds stress profiles for the planar turbulent gas jet case, and fuel vapor contour and liquid and vapor penetrations for the Diesel spray case predicted by the different numerical schemes were compared. The sensitivity of the numerical schemes to mesh resolution was also investigated. The non-viscosity based dynamic structure subgrid model was used. The numerical tool used in this study was OpenFOAM.
Technical Paper

Effects of EGR Components Along with Temperature and Equivalence Ratio on the Combustion of n-Heptane Fuel

2008-04-14
2008-01-0951
Fundamental simulations in a quiescent cell under adiabatic conditions were made to understand the effect of temperature, equivalence ratio and the components of the recirculated exhaust gas, viz., CO2 and H2O, on the combustion of n-Heptane. Simulations were made in single phase in which evaporated n-Heptane was uniformly distributed in the domain. Computations were made for two different temperatures and four different EGR levels. CO2 or H2O or N2was used as EGR. It was found that the initiation of the main combustion process was primarily determined by two competing factors, i.e., the amount of initial OH concentration in the domain and the specific heat of the mixture. Further, initial OH concentration can be controlled by the manipulating the ambient temperature in the domain, and the specific heat capacity of the mixture via the mixture composition. In addition to these, the pre combustion and the subsequent post combustion can also be controlled via the equivalence ratio.
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

2010-10-25
2010-01-2127
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine

2015-04-14
2015-01-0843
While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
Technical Paper

Combustion and Lift-Off Characteristics of n-Heptane Sprays Using Direct Numerical Simulations

2007-10-29
2007-01-4136
Fundamental simulations using DNS type procedures were used to investigate the ignition, combustion characteristics and the lift-off trends of a spatially evolving turbulent liquid fuel jet. In particular, the spatially evolving n-Heptane spray injected in a two-dimensional rectangular domain with an engine like environment was investigated. The computational results were compared to the experimental observations from an optical engine as reported in the literature. It was found that an initial fuel rich combustion downstream of the spray tip is followed by diffusion combustion. Investigations were also made to understand the effects of injection velocity, ambient temperature and the droplet radius on the lift-off length. For each of these parameters three different values in a given range were chosen. For both injection velocity and droplet radius, an increase resulted in a near linear increase in the lift-off length.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

A Triangulated Lagrangian Ignition Kernel Model with Detailed Kinetics for Modeling Spark Ignition with the G-Equation-Part I: Geometric Aspects

2018-04-03
2018-01-0195
Modeling ignition kernel development in spark ignition engines is crucial to capturing the sources of cyclic variability, both with RANS and LES simulations. Appropriate kernel modeling must ensure that energy transfer from the electrodes to the gas phase has the correct timing, rate and locations, until the flame surface is large enough to be represented on the mesh by the G-Equation level-set method. However, in most kernel models, geometric details driving kernel growth are missing: either because it is described as Lagrangian particles, or because its development is simplified, i.e., down to multiple spherical flames. This paper covers the geometric aspects of kernel development, which makes up the core of a Triangulated Lagrangian Ignition Kernel model. One (or multiple, if it restrikes) spark channel is initialized as a one-dimensional Lagrangian particle thread.
Technical Paper

A Quasi-Dimensional NOx Emission Model for Spark Ignition Direct Injection (SIDI) Gasoline Engines

2013-04-08
2013-01-1311
A fundamentally based quasi-dimensional NOx emission model for spark ignition direct injection (SIDI) gasoline engines was developed. The NOx model consists of a chemical mechanism and three sub-models. The classical extended Zeldovich mechanism and N₂O pathway for NOx formation mechanism were employed as the chemical mechanism in the model. A characteristic time model for the radical species H, O and OH was incorporated to account for non-equilibrium of radical species during combustion. A model of homogeneity which correlates fundamental dimensionless numbers and mixing time was developed to model the air-fuel mixing and inhomogeneity of the charge. Since temperature has a dominant effect on NOx emission, a flame temperature correlation was developed to model the flame temperature during the combustion for NOx calculation. Measured NOx emission data from a single-cylinder SIDI research engine at different operating conditions was used to validate the NOx model.
X