Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Vehicle Component Benchmarking Using a Chassis Dynamometer

2015-04-14
2015-01-0589
The benchmarking study described in this paper uses data from chassis dynamometer testing to determine the efficiency and operation of vehicle driveline components. A robust test procedure was created that can be followed with no a priori knowledge of component performance, nor additional instrumentation installed in the vehicle. To develop the procedure, a 2013 Chevrolet Malibu was tested on a chassis dynamometer. Dynamometer data, emissions data, and data from the vehicle controller area network (CAN) bus were used to construct efficiency maps for the engine and transmission. These maps were compared to maps of the same components produced from standalone component benchmarking, resulting in a good match between results from in-vehicle and standalone testing. The benchmarking methodology was extended to a 2013 Mercedes E350 diesel vehicle. Dynamometer, emissions, and CAN data were used to construct efficiency maps and operation strategies for the engine and transmission.
Technical Paper

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

2017-11-17
2017-01-5020
As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Technical Paper

Modeling of a Conventional Mid-Size Car with CVT Using ALPHA and Comparable Powertrain Technologies

2016-04-05
2016-01-1141
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. The ALPHA model has been updated from the previous version to include more realistic vehicle behavior and now includes internal auditing of all energy flows in the model [2]. As a result of the model refinements and in preparation for the mid-term evaluation (MTE) of the 2022-2025 LD GHG emissions standards, the model is being revalidated with newly acquired vehicle data.
Journal Article

Investigating the Effect of Advanced Automatic Transmissions on Fuel Consumption Using Vehicle Testing and Modeling

2016-04-05
2016-01-1142
In preparation for the midterm evaluation (MTE) of the 2022-2025 Light-Duty Greenhouse Gas (LD GHG) emissions standards, the Environmental Protection Agency (EPA) is refining and revalidating their Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool using newly acquired data from model year 2013-2015 engines and vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all internal energy flows in the model. As part of the validation of ALPHA, the EPA obtained model year 2014 Dodge Chargers equipped with 3.6 liter V6 engines and either a NAG1 five-speed automatic transmission or an 845RE eight-speed automatic transmission.
Journal Article

Fleet-Level Modeling of Real World Factors Influencing Greenhouse Gas Emission Simulation in ALPHA

2017-03-28
2017-01-0899
The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
Technical Paper

Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine

2018-04-03
2018-01-1423
Low-pressure loop exhaust gas recirculation (LP- EGR) combined with higher compression ratio, is a technology package that has been a focus of research to increase engine thermal efficiency of downsized, turbocharged gasoline direct injection (GDI) engines. Research shows that the addition of LP-EGR reduces the propensity to knock that is experienced at higher compression ratios [1]. To investigate the interaction and compatibility between increased compression ratio and LP-EGR, a 1.6 L Turbocharged GDI engine was modified to run with LP-EGR at a higher compression ratio (12:1 versus 10.5:1) via a piston change. This paper presents the results of the baseline testing on an engine run with a prototype controller and initially tuned to mimic an original equipment manufacturer (OEM) baseline control strategy running on premium fuel (92.8 anti-knock index).
Journal Article

Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation

2015-04-14
2015-01-1142
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to estimate greenhouse gas (GHG) emissions from light-duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. In order to model the behavior of current and future vehicles, an algorithm was developed to dynamically generate transmission shift logic from a set of user-defined parameters, a cost function (e.g., engine fuel consumption) and vehicle performance during simulation. This paper presents ALPHA's shift logic algorithm and compares its predicted shift points to actual shift points from a mid-size light-duty vehicle and to the shift points predicted using a static table-based shift logic as calibrated to the same vehicle during benchmark testing.
X