Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Strain Rate Effects on Mechanical Stability of Retained Austenite in TRIP Sheet Steels

2006-04-03
2006-01-1434
Dynamic mechanical properties of TRIP steels with the same volume fraction but different stabilities of retained austenite were evaluated over a wide range of strain rates using a high-velocity hydraulic tensile testing machine. Tensile tests were performed at strain rates ranging from 10-2 to 6×102s-1 and ultimate tensile strength, strain hardening behavior, and absorbed energy were evaluated. Strain control during high speed tensile testing was accomplished using a “stopper” attachment designed to limit strain within the gage section to an amount preset before testing. Strain was controlled successfully up to the highest strain rate examined, 200 s-1. The methodology allowed, for the first time, the extent of austenite transformation to be monitored at incremental strains during a high-rate test. At all strain rates, the extent of martensite transformation was considerable after only a few strain percent, and was essentially complete well before the onset of necking.
Technical Paper

Optimized Carburized Steel Fatigue Performance as Assessed with Gear and Modified Brugger Fatigue Tests

2002-03-04
2002-01-1003
The effectiveness of three different techniques, designed to improve the bending fatigue life in comparison to conventionally processed gas-carburized 8620 steel, were evaluated with modified Brugger bending fatigue specimens and actual ring and pinion gears. The bending fatigue samples were machined from forged gear blanks from the same lot of material used for the pinion gear tests, and all processing of laboratory samples and gears was done together. Fatigue data were obtained on standard as-carburized parts and after three special processing histories: shot-peening to increase surface residual stresses; double heat treating to refined austenite grain size; and vacuum carburizing to minimize intergranular oxidation. Standard room-temperature S-N curves and endurance limits were obtained with the laboratory samples. The pinions were run as part of a complete gear set on a laboratory dynamometer and data were obtained at two imposed torque levels.
Technical Paper

Investigation of S-N Test Data Scatter of Carburized 4320 Steel

2007-04-16
2007-01-1006
A series of bending fatigue tests were conducted and S-N data were obtained for two groups of 4320 steel samples: (1) carburized, quenched and tempered, (2) carburized, quenched, tempered and shot peened. Shot peening improved the fatigue life and endurance limit. The S-N data exhibited large scatter, especially for carburized samples and at the high cycle life regime. Sample characterization work was performed and scatter bands were established for residual stress distributions, in addition to fracture and fatigue properties for 4320 steel. Moreover, a fatigue life analysis was performed using fracture mechanics and strain life fatigue theories. Scatter in S-N curves was established computationally by using the lower bound and upper bound in materials properties, residual stress and IGO depth in the input data. The results for fatigue life analysis, using either computational fracture mechanics or strain life theory, agreed reasonably well with the test data.
Technical Paper

Effects of Strain Path on Formability and Microstructural Evolution in Low-Carbon Sheet Steels

1997-02-24
970155
The effects of strain path on formability and microstructural evolution with strain in two low-carbon steels were examined. The steels include a 0.008 wt. pct. C batch annealed 0.81 mm thick sheet and a 0.031 wt. pct. C continuously annealed0.74 mm sheet with essentially equivalent mechanical properties (YS: 230 MPa; UTS: 350 MPa; n: 0.18). The steels were subjected to various increments of prestrain in either uniaxial or biaxial tension, and forming limits were assessed in the samples after a strain path change to biaxial or uniaxial tension, respectively. Biaxial stretching prestrain lowers the uniaxial tension forming limit, while uniaxial tensile prestrain raises the biaxial stretching forming limit. The differences in forming response were also correlated with distinct dislocation cell structures. The effects of strain path on formability were shown to correlate with predictions based on a redundant strain model and a critical thickness strain model.
Technical Paper

Effects of Pre-Strain on Properties of Low-Carbon Sheet Steels Tested over a Wide Range of Strain Rates

2001-03-05
2001-01-0082
Knowledge of high strain-rate deformation behavior of automotive body structural materials is of importance for design of new vehicles with improved crash-energy management characteristics. Since a large range of plastic strains is encountered during the forming process prior to assembly, the mechanical behavior of sheet steels under high strain rate deformation conditions must be understood after pre-straining, in addition to the as-produced condition. This paper presents the compression testing methodology employed to examine these properties, and focuses on the effects of quasi-static pre-strains (from 0 to 20%) on the subsequent behavior of a low carbon interstitial free steel tested over a broad range of strain rates (from 10−2 to 103s−1). The results suggest that the increase in yield stress associated with increasing strain rate is not substantially influenced by prior cold work.
Technical Paper

Deep Rolling Response of Notched Medium Carbon Bar Steels

2004-03-08
2004-01-1528
The effects of deep rolling were evaluated by reviewing the fatigue performance of three medium-carbon (0.4 C) bar steels representing microstructural classes characteristic of forging steels used for crankshaft and other automotive applications. Deep rolling is a surface deformation process whereby a radially symmetric work piece undergoes a surface deformation operation. The steel grades included a quenched and tempered alloy steel (4140) that demonstrated a high yield stress and low strain hardening rate, a non-traditional bainitic experimental grade (1.2 Mn, 0.72 Si) containing high amounts of retained austenite with low yield stress and high strain hardening rate, and a ferritic/pearlitic grade (1.3 Mn, 0.56 Si) with a low yield stress and medium strain rate hardening rate. A reproducible test methodology to assess fatigue behavior was developed, based on flex-beam, fully reversed, S-N type laboratory fatigue testing.
Technical Paper

Bending Fatigue of Carburized Steels: A Statistical Analysis of Process and Microstructural Parameters

2000-03-06
2000-01-0611
A large set of bending fatigue data on carburized steels has been statistically analyzed to quantitatively describe the effects of process and microstructural variables. Increasing demands on gear steels require a broad examination of past bending fatigue research to reveal the primary factors that determine fatigue performance and guide future gear steel design. Fatigue performance was correlated to specimen characteristics such as retained austenite content, case and core grain size, extent of intergranular oxidation, surface roughness, and the case profiles of residual stress, hardness, and carbon content. Prior austenite grain size in the case and surface residual stress were found to most strongly influence bending fatigue endurance limit. A multiple regression model to predict endurance limit achieved an R-squared value of 0.56.
X