Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle and Occupant Response in Heavy Truck to Passenger Car Sideswipe Impacts

2001-03-05
2001-01-0900
There have been a number of papers written about the dynamic effects of low speed front to rear impacts between motor vehicles during the last several years. This has been an important issue in the field of accident analysis and reconstruction because of the frequency with which the accidents occur and the costs of injuries allegedly associated with them. Sideswipe impacts are another, often minor, type of motor vehicle impact that generate a significant number of injury claims. These impacts are difficult to analyze for a number of reasons. First, there have been very few studies in the literature describing the specific dynamic effects of minor sideswipe impacts on the struck vehicles and their occupants. Those that have been performed have focused on the impact of two passenger cars.
Technical Paper

Vehicle Inertial Parameters-Measured Values and Approximations

1988-11-01
881767
This paper describes an apparatus, called the Inertial Parameter Measurement Device (IPMD), which recently has been developed by the National Highway Traffic Safety Administration at its Vehicle Research and Test Center. The IPMD measures the center of gravity height and the pitch, roll, and yaw moments of inertia of a vehicle. The first section of this paper describes the features, capabilities, limitations, and design of the IFMD. This is followed by a presentation of the vehicle parameters that have been measured by it, to date. The final section of the paper presents several commonly used, and one proposed, rules of thumb for estimating inertial parameters. Data from measurements made by the IPMD are used to show the validity of these rules. Curves obtained by fitting the measured data are also shown for the moments of inertia as functions of the vehicle weight.
Technical Paper

Vehicle Dynamics Modeling for the National Advanced Driving Simulator of a 1997 Jeep Cherokee

1999-03-01
1999-01-0121
This paper discusses the development of the 1997 Jeep Cherokee model for the National Advanced Driving Simulator's planned vehicle dynamics software, NADSdyna. Recursive rigid body formalism called the Real Time Recursive Dynamics (RTRD) developed by the University of Iowa is used to model the front and rear suspension mechanisms. To complement vehicle dynamics for simulator applications, subsystems that include tires, aerodynamics, powertrain, brake, and steering are added to the rigid body dynamics model. These models provide high fidelity driving realism to simulate severe handling maneuvers in real time. The soundness of the model does not only depend on the mathematics of the model, but also on the validity of the parameters. Therefore, this paper discusses thoroughly the methodology of parameters estimation. A generic model of cruise control is included.
Technical Paper

Vehicle Dynamics Modeling and Validation of the 2003 Ford Expedition with ESC using CarSim

2009-04-20
2009-01-0452
The paper discusses the development of a vehicle dynamics model and model validation of the 2003 Ford Expedition in CarSim. The accuracy of results obtained from simulations depends on the realism of the model which in turn depends on the measured data used to define the model parameters. The paper describes the tests used to measure the vehicle data and also gives a detailed account of the methodology used to determine parameters for the CarSim Ford Expedition model. The vehicle model was validated by comparing simulation results with experimental testing. Bounce and Roll tests in CarSim were used to validate the suspension and steering kinematics and compliances. Field test data of the Sine with Dwell maneuver was used for the vehicle model validation. The paper also discusses the development of a functional electronic stability control system and its effect on vehicle handling response in the Sine with Dwell maneuver.
Technical Paper

Vehicle Dynamics Modeling and Validation for the 2003 Ford Expedition with ESC using ADAMS View

2009-04-20
2009-01-0453
The paper discusses the development of a model of the 2003 Ford Expedition using ADAMS View and its validation with experimental data. The front and rear suspensions are independent double A-arm type suspensions modeled using rigid links and ideal joints. The suspension springs and shock absorbers are modeled as force elements. The plots comparing the experimental tests and the simulation results are shown in this paper. Quasi-static roll and bounce tests are used to validate the suspension characteristics of the model while the Sine with Dwell and Slowly Increasing Steer maneuvers are used to validate the vehicle handling and tire-road interaction characteristics of the model. This paper also details the incorporation of an ESC model, originally developed by Kinjawadekar et al. [2] for CarSim, with the ADAMS model. The ESC is modeled in Simulink and co-simulated with the ADAMS vehicle model. Plots validating the ESC model with experimental data are also included.
Technical Paper

Validation of a Roll Simulator for Recreational Off-Highway Vehicles

2012-04-16
2012-01-0241
A two-degree-of-freedom Roll Simulator has been developed to study the occupant kinematics of Recreational Off-Highway Vehicles (ROVs). To validate the roll simulator, test data was collected on a population of ROVs on the market today. J-turn maneuvers were performed to find the minimum energy limits required to tip up the vehicles. Two sets of tests were performed: for the first set, 10 vehicles were tested, where the motion was limited by safety outriggers to 10-15 degrees of roll; and for the second set, three of these vehicles were re-tested with outriggers removed and the vehicle motion allowed to reach 90 degrees of roll. These quarter-turn rollover tests were performed autonomously using an Automatic Steering Controller (ASC) and a Brake and Throttle Robot (BTR). Lateral and longitudinal accelerations as well as roll rate and roll angle were recorded for all tests.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Technical Paper

Validation and Enhancement of a Heavy Truck Simulation Model with an Electronic Stability Control Model

2010-04-12
2010-01-0104
Validation was performed on an existing heavy truck vehicle dynamics computer model with roll stability control (RSC). The first stage in this validation was to compare the response of the simulated tractor to that of the experimental tractor. By looking at the steady-state gains of the tractor, adjustments were made to the model to more closely match the experimental results. These adjustments included suspension and steering compliances, as well as auxiliary roll moment modifications. Once the validation of the truck tractor was completed for the current configuration, the existing 53-foot box trailer model was added to the vehicle model. The next stage in experimental validation for the current tractor-trailer model was to incorporate suspension compliances and modify the auxiliary roll stiffness to more closely model the experimental response of the vehicle. The final validation stage was to implement some minor modifications to the existing RSC model.
Technical Paper

Validation Results from Using NADSdyna Vehicle Dynamics Simulation

1997-02-24
970565
This paper presents an evaluation of a vehicle dynamics model intended to be used for the National Advanced Driving Simulator (NADS). Dynamic validation for high performance simulation is not merely a comparison between experimental and simulation plots. It involves strong insight of vehicle's subsystems mechanics, limitations of the mathematical formulations, and experimental predictions. Lateral, longitudinal, and ride dynamics are evaluated using field test data, and analytical diagnostics. The evaluation includes linear and non-linear range of vehicle dynamics response.
Technical Paper

Tractor-Semitrailer Stability Following a Steer Axle Tire Blowout at Speed and Comparison to Computer Simulation Models

2013-04-08
2013-01-0795
This paper documents the vehicle response of a tractor-semitrailer following a sudden air loss (Blowout) in a steer axle tire while traveling at highway speeds. The study seeks to compare full-scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models. Full-scale testing of a tractor-semitrailer experiencing a sudden failure of a steer axle tire was conducted. Vehicle handling parameters were recorded by on-board computers leading up to and immediately following the sudden air loss. Inertial parameters (roll, yaw, pitch, and accelerations) were measured and recorded for the tractor and semitrailer, along with lateral and longitudinal speeds. Steering wheel angle was also recorded. These data are presented and also compared to the results of computer simulation models. The first simulation model, SImulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment.
Technical Paper

The Variation of Static Rollover Metrics With Vehicle Loading and Between Similar Vehicles

1992-02-01
920583
This paper examines variability of two static rollover metrics, Static Stability Factor (SSF) and Tilt Table Ratio (TTR), due to vehicle loading and vehicle-to-vehicle variation. Variability due to loading was determined by measuring SSF and TTR for 14 vehicles/configurations at multiple loadings. Up to five loadings were used per vehicle/configuration tested. Vehicle-to-vehicle variability was studied by measuring SSF and TTR for ten unmodified vehicles of each of four make/models. Five baseline vehicles, as similar as was feasible, were tested. The other five test vehicles spanned the range of submodels and options available. In general, both SSF and TTR decreased as occupants were added to a vehicle. The change in SSF and TTR per occupant was fairly consistent, with changes in TTR being more consistent. Placing ballast on the floor of the cargo compartment had a mixed effect on SSF, raising it for some vehicles and lowering it for others.
Journal Article

The Influence of Disablement of Various Brakes on the Dry Stopping Performance and Stability of a Tractor-Semitrailer

2009-04-20
2009-01-0099
This research was performed using a designed experiment to evaluate the loss of dry surface braking performance and stability that could be associated with the disablement of specific brake positions on a tractor-semitrailer. The experiment was intended to supplement and update previous research by Heusser, Radlinski, Flick, and others. It also sought to establish reasonable limits for engineering estimates on stopping performance degradation attributable to partial or complete brake failure of individual S-cam air brakes on a class 8 truck. Stopping tests were conducted from 30 mph and 60 mph, with the combination loaded to GCW (80,000 lb.), half-payload, and with the flatbed semitrailer unladen. Both tractor and semitrailer were equipped with antilock brakes. Along with stopping distance, brake pressures, longitudinal acceleration, road wheel speed, and steering wheel position and effort were also recorded.
Technical Paper

The Importance of Tire Lag on Simulated Transient Vehicle Response

1991-02-01
910235
This paper discusses the importance of having an adequate model for the dynamic response characteristics of tire lateral force to steering inputs. Computer simulation and comparison with experimental results are used to show the importance of including appropriate tire dynamics in simulation tire models to produce accurate predictions of vehicle dynamics. Improvements made to the tire dynamics model of an existing vehicle stability and control simulation, the Vehicle Dynamics Analysis, Non-Linear (VDANL) simulation, are presented. Specifically, the improvements include changing the simulation's tire dynamics from first-order system tire side force lag dynamics to second-order system tire slip angle dynamics. A second-order system representation is necessary to model underdamped characteristics of tires at high speeds. Lagging slip angle (an input to the tire model) causes all slip angle dependent tire force and moment outputs to be lagged.
Technical Paper

The Effects of Suspension Stiffness on Handling Responses

1991-09-01
911928
The purpose of this paper is to investigate the influence of suspension roll stiffness on handling responses. A linear mathematical model is utilized to scrutinize responses on sideslip, yaw velocity and roll angle. Due to different sensitivity to suspension roll stiffness, the influence on an oversteer and an understeer vehicle is very distinct. An oversteer vehicle possesses high sensitivity to suspension stiffness at high speeds. Forward speed also plays an important role. Responses in root locus plots and steady state gains are illustrated in this study.
Technical Paper

The Development of a Heavy Truck ABS Model

2005-04-11
2005-01-0413
This paper discusses the improvement of a heavy truck anti-lock brake system (ABS) model currently used by the National Highway Traffic Safety Administration (NHTSA) in conjunction with multibody vehicle dynamics software. Accurate modeling of this complex system is paramount in predicting real-world dynamics, and significant improvements in model accuracy are now possible due to recent access to ABS system data during on-track experimental testing. This paper focuses on improving an existing ABS model to accurately simulate braking under limit braking maneuvers on high and low-coefficient surfaces. To accomplish this, an ABS controller model with slip ratio and wheel acceleration thresholds was developed to handle these scenarios. The model was verified through testing of a Class VIII 6×4 straight truck. The Simulink brake system and ABS model both run simultaneously with TruckSim, with the initialization and results being acquired through Matlab.
Technical Paper

The Design of a Vehicle Inertia Measurement Facility

1995-02-01
950309
This paper describes the design of a vehicle inertia measurement facility (VIMF): a facility used to measure vehicle center of gravity position; vehicle roll, pitch, and yaw mass moments of inertia; and vehicle roll/yaw mass product of inertia. The rationale for general design decisions and the methods used to arrive at the decisions are discussed. The design is inspired by the desire to have minimal measurement error and short test time. The design was guided by analytical error analyses of the contributions of individual system errors to the overall measurement error. A National Highway Traffic Safety Administration (NHTSA) database of center of gravity position and mass moment of inertia data for over 300 vehicles was used in conjunction with the error analyses to design various VIMF components, such as the roll and yaw spring sizes.
Technical Paper

The Design of a Suspension Parameter Measurement Device

1987-02-01
870576
This paper describes the theory and design of an apparatus, the Suspension Parameter Measurement Device (SPMD), which has been developed to measure the displacements and forces which occur at the road wheels of a vehicle as the body moves, or as lateral and/or longitudinal forces are applied at the tire/road interface. Wheel movements resulting from the bounce, pitch, or roll motions of the vehicle body in the absence of lateral and longitudinal forces at the tire/road interface are the kinematic characteristics of the suspension. Wheel displacements caused by the application of forces in the plane of the road are defined as the compliance characteristics, while those resulting from motions of the steering wheel are the steering characteristics. The purpose of the SPMD is to measure all of these characteristics, thereby providing data for use in the simulation of the performance of cars and light trucks.
Journal Article

The Design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for Military Vehicles

2013-04-08
2013-01-0696
This paper describes the mechanical design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for wheeled military vehicles. This is a facility used to measure quasi-static suspension and steering system properties as well as tire vertical static stiffness. The machine operates by holding the vehicle body nominally fixed while hydraulic cylinders move an “axle frame” in bounce or roll under each axle being tested. The axle frame holds wheel pads (representing the ground plane) for each wheel. Specific design considerations are presented on the wheel pads and the measurement system used to measure wheel center motion. The constraints on the axle frames are in the form of a simple mechanism that allows roll and bounce motion while constraining all other motions. An overview of the design is presented along with typical results.
Technical Paper

Suspension Parameter Measurement Using Side-Pull Test To Enhance Modeling of Vehicle Roll

1999-03-01
1999-01-1323
This paper describes a new laboratory test facility for measuring suspension parameters that affect rollover. The Side-Pull mechanism rolls the test vehicle through a cable attached rigidly at its center of gravity (CG). Changes in wheel camber and wheel steer angles are measured as a function of body roll angle. The roll test simulates a steady-state cornering. Thus, both compliance and kinematic forces are fed simultaneously to the vehicle as they would be applied in a real cornering situation. The lateral load transfer, and roll angle as a function of simulated lateral acceleration is determined. The Side-Pull Roll Measurement has advantages over the conventional roll tests where the rolling force couple is applied vertically. The Side-Pull mechanism rolls the vehicle in a unrestricted way with horizontal forces applied at the tire / pad contact and the CG location. Thus, the measurements take into account coupling of compliance with roll.
Technical Paper

Sprung/Unsprung Mass Properties Determination without Vehicle Diassembly

1996-02-01
960183
This paper presents a method of measuring a vehicle's sprung mass without vehicle disassembly. The method involves measuring whole vehicle properties at different trim heights. The accuracy of the method is tested using results for several vehicles. As an extension of the sprung mass determination, this paper also demonstrates the feasibility of determining the inertial properties of a vehicle's sprung mass without vehicle disassembly. Lastly, measured vehicle roll/yaw product of inertia values are presented for a selection of vehicles.
X