Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Neutron Diffraction Study on Residual Stress in Aluminum Engine Blocks Following Machining and Service Testing

2012-04-16
2012-01-0188
Development of lightweight alloys suitable for automobile applications has been of great importance to the automotive industry in recent years. The use of 319 type aluminum alloy in the production of gasoline engine blocks is an example of this shift towards light alloys for large automobile components. However, excessive residual stress along the cylinder bores of these engine blocks may cause problems during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual stresses along the aluminum cylinder bridge and the gray cast iron liners. The strains were measured in the hoop, radial, and axial orientations, while stresses were subsequently calculated using generalized Hooke's law. The results suggest that the residual stress magnitude for the aluminum cylinder bridge was tensile for all three measured components and gradually increased with cylinder depth towards the bottom of the cylinder.
Journal Article

Effect of Chill Parameters on the Residual Strain in Cast 319 Aluminum Alloy: A Neutron Diffraction Study

2014-04-01
2014-01-0836
The demand for light weight vehicles continues to stimulate extensive research into the development of light weight casting alloys and optimization of their manufacturing processes. Of primary relevance are Aluminum (Al) and Magnesium (Mg) based alloys, which have successfully replaced selected iron based castings in automobiles. However, optimization of as-cast microstructure, processing and performance remains a challenge for some Al-based alloys. In this context, placement of chills in castings has been frequently used to locally manipulate the solidification conditions and microstructure of a casting. In this work, the effect of using an active copper chill on the residual strain profile of a sand-cast B319 aluminum alloy was investigated. Wedge-shaped castings were produced with three different cooling conditions: copper plate chill, copper pipe with cooling water and no chill (baseline).
Technical Paper

Assessment of Residual Stress in T5 Treated 319 Aluminum Alloy Engine Blocks Using Neutron Diffraction

2016-04-05
2016-01-0353
Aluminum alloys have been replacing ferrous alloys in automotive applications to reduce the weight of vehicles. The engine block is a striking example of weight reduction, and is made of Al-Si-Cu-Mg (319 type) alloys. The wear resistance in the engine block is enabled by cast iron liners, and these liners introduce tensile residual stress due to a thermo-mechanical mismatch. Typically, an artificial aging treatment effectively reduces residual stress. In this study, neutron diffraction was used to measure the residual stress profiles along the cylinder bridge of a T5 treated 319 aluminum alloy engine block. Results indicated high tensile residual stresses (200-300 MPa) in the hoop and axial orientation at depths of 50-60 mm below the head deck. The high residual stresses were likely due to a combination of minimal stress relief during artificial aging and stress development during post process cooling.
Journal Article

Analysis of Residual Strain Profiles in Distorted Aluminum Engine Blocks by Neutron Diffraction

2013-04-08
2013-01-0171
In recent years, light weight components have been an area of significant importance in automotive design. This has led to the replacement of steel and cast iron with aluminum alloys for many automotive components. For instance, Al-Si alloys have successfully replaced nodular and gray cast iron in the production of large automotive components such as engine blocks. However, excessive residual strain along the cylinder bores of these engine blocks may result in cylinder distortion during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual strain along the aluminum cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. The strains were measured in the hoop, radial, and axial orientations. The results suggest that the residual strain along the aluminum cylinder bridge of the distorted engine block was tensile for all three measured components.
X