Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Severe Soot Oxidations in Gasoline Particulate Filter Applications

2018-09-10
2018-01-1699
With the start of EU6 in 2017 gasoline particulate filters (GPF) have been introduced to production vehicles. It is expected that by 2019 all gasoline direct injection engines sold in Europe will be equipped with a GPF. A similar trend is observed in China with a slight delay compared to Europe, but covering all gasoline engines, including those with port fuel injection technology. With the introduction of GPFs, new requirements are introduced to the management of gasoline engines and their aftertreatment. One requirement is to protect the aftertreatment components from excessive temperatures and damage as result of uncontrolled soot oxidations. While the general fundamentals are similar to those in diesel applications, significant differences exist in the relevant details.
Journal Article

Probing Species Formed by Pilot Injection During Re-Compression in a Controlled Auto-Ignition Engine by H2CO LIF and Chemiluminescence Imaging

2014-04-01
2014-01-1275
Pilot injection (PI) during the negative-valve-overlap (NVO) period is one method to improve control of combustion in gasoline controlled auto-ignition engines. This is generally attributed to both chemical and thermal effects. However, there are little experimental data on active species formed by the combusting PI and their effect on main combustion in real engines. Thus, it is the objective of the current study to apply and assess optical in-cylinder diagnostics for these species. Firstly, the occurrence and nature of combustion during the NVO period is investigated by spectrally-resolved multi-species flame luminescence measurements. OH*, CH*, HCO*, CO-continuum chemiluminescence, and soot luminosity are recorded. Secondly, spectrally-, spatially-, and cycle-resolved laser-induced fluorescence measurements of formaldehyde are conducted. It is attempted to find a cycle-resolved measure of the chemical effect of PI.
Journal Article

Next Generation Gasoline Particulate Filters for Uncatalyzed Applications and Lowest Particulate Emissions

2021-04-06
2021-01-0584
With the introduction of EU6d and CN6 all vehicles with gasoline direct injection and many with port fuel injection engine will be equipped with a gasoline particulate filter (GPF). A range of first generation filter technologies has been introduced successfully, helping to significantly reduce the tailpipe particulate number emissions. The continued focus on particulate emissions and the increasing understanding of their impact on human health, combined with the advanced emission regulations under RDE conditions results in the desire for filters with even higher filtration efficiency, especially in the totally fresh state. At the same time, to balance with the requirements on power and CO2, limitations exist with respect to the tolerable pressure drop of filters. In this paper we will report on a new generation of gasoline particulate filters for uncatalyzed applications.
Journal Article

Modeling of the Soot Oxidation in Gasoline Particulate Filters

2015-04-14
2015-01-1048
The share of gasoline engines based on direct injection (DI) technology is rapidly growing, to a large extend driven by their improved efficiency and potential to lower CO2 emissions. One downside of these advanced engines are their significantly higher particulate emissions compared to engines based on port fuel injection technologies [1]. Gasoline particulate filters (GPF) are one potential technology path to address the EU6 particulate number regulation for vehicles powered by gasoline DI engines. For the robust design and operation of GPFs it is essential to understand the mechanisms of soot accumulation and oxidation under typical operating conditions. In this paper we will first discuss the use of detailed numerical simulation to describe the soot oxidation in particulate filters under typical gasoline engine operating conditions. Laboratory experiments are used to establish a robust set of soot oxidation kinetics.
Technical Paper

Modeling of Transport and Mixing Phenomena in Turbulent Flows in Closed Domains

2015-04-14
2015-01-0399
In this work, a transport and mixing model that calculates mixing in thermodynamic phase space was derived and validated. The mixing in thermodynamic multizone space is consistent to the one in the spatially resolved physical space. The model is developed using a turbulent channel flow as simplified domain. This physical domain of a direct numerical simulation (DNS) is divided into zones based on the quantitative value of transported scalars. Fluxes between the zones are introduced to describe mixing from the transport equation of the probability density function based on the mixing process in physical space. The mixing process of further scalars can then be carried out with these fluxes instead of solving additional transport equations. The relationship between the exchange flux in phase space and the concept of scalar dissipation are shown and validated by comparison to DNS results.
Technical Paper

GPF: An Effective Technology to Minimize Two Wheeler (2Wh) Particulate Emission

2024-01-16
2024-26-0140
India is the world’s largest two-wheeler (2Wh) market. With the proportion of its middle class rapidly rising, 2Wh sales and the resulting emissions, are expected to grow exponentially. The decision to leap-frog from BSIV to BSVI emission norms shows India’s commitment to clean up its atmosphere. As of now, the regulation mandates Gaseous Pollutant (CO, HC, NOx) emission limits for all 2Whs and a particulate limit (PM & PN) for 2Whs powered by Direct Injection (DI) engines. Most of the 2Whs manufactured in India are powered by gasoline engines using the Port Fuel Injection (PFI) technology, and hence by definition particulate emission limits do not apply to them. Particulates when inhaled - especially of the ultrafine sizes capable of entering the blood stream - pose a serious health risk. This was the primary motivation to investigate the particulate emission levels of the 2Whs, which as on date, do not come under the purview of BSVI regulation.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

A Study of Emission Durability and Ash Accumulation of “Advanced Three-way Catalyst Integrated on Gasoline Particulate Filter” for BS6 (Stage2) Applications

2021-09-22
2021-26-0182
India BS6 Stage2 (2023) regulations demand all gasoline direct injection (GDI) vehicles to meet particulate number emissions (PN) below 6x10+11# per km. Gasoline particulate filters (GPF) are a proven technology and enable high PN filtration efficiencies throughout the entire vehicle lifetime. One challenge for GPF applications could be the changing emission performance characteristics as a function of mileage due to collected ash and/or soot deposits with implications on back pressure losses. The main objective of this technical contribution is to study the above-mentioned challenges while applying Indian driving conditions and typical Indian climate and other ambient conditions. The substrate technology selected for this study is a high porosity GPF designed to enable the integration of a three-way functionality into the GPF, commonly described as catalyzed GPF (cGPF).
X