Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Use of Designed Experiments in Wind Tunnel Testing of Performance Automobiles

A Design of Experiments (DOE) approach to wind tunnel testing of performance automobiles is being explored at the Langley Full-Scale Tunnel. Traditional methods for wind tunnel testing have focused on conventional “one factor at a time” (OFAT) methods which have difficulty in unearthing valuable interactive effects between variables. In an effort to better characterize a vehicle's aerodynamic behavior as a function of common variables, an exploratory study was completed using the DOE methodology for a common sedan racecar. A two-level factorial designed experiment with center points produced regression models for the lift, drag, and lift to drag ratio as a function of ride height, grille porosity, and yaw angle. In addition, model adequacy and uncertainty levels were described.
Journal Article

Understanding Practical Limits to Heavy Truck Drag Reduction

A heavy truck wind tunnel test program is currently underway at the Langley Full Scale Tunnel (LFST). Seven passive drag reducing device configurations have been evaluated on a heavy truck model with the objective of understanding the practical limits to drag reduction achievable on a modern tractor trailer through add-on devices. The configurations tested include side skirts of varying length, a full gap seal, and tapered rear panels. All configurations were evaluated over a nominal 15 degree yaw sweep to establish wind averaged drag coefficients over a broad speed range using SAE J1252. The tests were conducted by first quantifying the benefit of each individual treatment and finally looking at the combined benefit of an ideal fully treated vehicle. Results show a maximum achievable gain in wind averaged drag coefficient (65 mph) of about 31 percent for the modern conventional-cab tractor-trailer.
Technical Paper

Road Simulation for NASCAR Vehicles at the Langley Full-Scale Tunnel

A road simulation system has been developed at the Langley Full-Scale Tunnel (LFST) to support the aerodynamic testing of NASCAR-class race cars. The leading edge of the existing ground board was recontoured to alleviate a separation bubble and an active suction boundary layer control system, incorporating a bleed slot and axial flow blower, has been implemented. Performance evaluations include boundary layer surveys at various locations in the vicinity of the car balance with the empty tunnel as well as force measurements with a representative vehicle both with and without the boundary layer control system operating.
Technical Paper

Performance Automotive Applications of Pressure-Sensitive Paint in the Langley Full Scale Tunnel

Recently, there has been a strong emphasis on aerodynamic and aeroacoustic wind tunnel testing of automobiles. While significant level resources have been spent on investigating aerodynamics, the methodology has not changed appreciably since the beginning of aerodynamics as a science. Over the past decade, a number of global flow diagnostic techniques have been developed that drastically increase the quality and quantity of data from wind tunnel testing. One of these technologies is the use of pressure sensitive luminescent coatings, known as pressure-sensitive paint, a method which has matured considerably since its inception and is now used extensively in aerospace applications with good results. The goal of this research is to implement this technology in the full scale testing of high performance automotive vehicles. This paper discusses the details of a preliminary test, such as technique, paint formulation, camera and lighting hardware, and data reduction and analysis.
Technical Paper

Experimental and Computational Investigation of Ahmed Body for Ground Vehicle Aerodynamics

External aerodynamics remains one of the major concerns in designing a new generation road vehicle. In the present study, the external aerodynamics of an Ahmed body at a scale and Reynolds number, that are representative of a car or light truck at highway speeds, is explored. An experimental model test was compared with a computational model using various back angles. In addition, the experiment allowed lift and drag to be measured at yaw angles up to ±15 degrees. Reynolds number effect on drag and lift coefficients was studied and wind averaged drag coefficients were calculated. The numerical calculations used a Reynolds-averaged, unsteady Navier-Stokes formulation. Both experimental and computational results are presented for back angles of 0-, 12.5-, and 25-degrees, then compared with each other and the data available in the literature.
Technical Paper

Experimental Investigation of Wake Boards for Drag Reduction on an Ahmed Body

Commercial heavy trucks are characterized as bluffbodies and have unsteady wake flows and high base drag. Base drag has been studied for many years as a primary target for aerodynamic drag reduction. Many aftend devices have been created for active or passive reduction of base drag. Base flaps are one type of device that have shown promise for drag reduction. They consist of 3 or 4 panels joined at their edges to form an open box structure. Although base flaps have been shown to reduce drag, they have not been adopted by the trucking industry because they are inconvenient to deploy on a commercial scale. A practical refinement to base flaps is the two-panel wake board (WB). It is a commercially viable solution, with easy deployment and significant drag reduction. This paper presents experimental data for two-panel wake boards with varying width and inset on an Ahmed body at yaw angles up to 12 degrees.
Journal Article

Drag Reduction of a Modern Straight Truck

A wind tunnel test program was conducted at the Langley Full Scale Tunnel (LFST) to evaluate the performance of five passive drag reduction configurations on a modern straight truck at full scale. Configurations were tested in a build-up fashion with results representing a cumulative effect. Tested configurations include a front valance, a front box fairing, a boat-tail, an ideal side-skirt, and a practical side-skirt. Configurations were evaluated over a nominal 9 degree yaw sweep to establish wind averaged drag coefficients using SAE J1252. Genuine replicate yaw sweeps were used in an uncertainty analysis. Results show up to 28% improvement in wind-averaged drag coefficient and that significant gains can be made in straight truck fuel economy, even at non-highway speeds.
Technical Paper

Development of Race Car Testing at the Langley Full-Scale Tunnel

This paper reviews the development of a new test capability for race cars at the Langley Full-Scale Tunnel. The existing external force balance of the Langley Full-Scale Tunnel, designed for use with full-scale aircraft, was reconfigured for automobile testing. Details of structural modifications relevant to supporting cars and force measurements are shown. A specialized automobile force balance, measuring vehicle drag and individual wheel downforce, was then designed, constructed and calibrated. The design was governed by simplicity and low cost and was tailored to the stock car racing community. The balance became fully operational in early 1998. The overall layout of the automobile balance and comparisons to reference data from another full-scale wind tunnel is presented.
Technical Paper

An Assessment of Drag Reduction Devices for Heavy Trucks Using Design of Experiments and Computational Fluid Dynamics

Aerodynamic drag, lift, and side forces have a profound influence on fuel efficiency, vehicle speed, stability, acceleration and performance. All of these areas benefit from drag reduction and changing the lift force in favor of the operating conditions. The present study simulates the external flow field around a heavy truck with three prototype add-on drag reduction devices using a computational method. The model and the method are selected to be three dimensional and time-dependent. The Reynolds-averaged Navier Stokes equations are solved using a finite volume method. The Renormalization Group (RNG) k-ε model was elected for closure of the turbulent quantities. The run cases were chosen so that the influence of each drag reduction device could be established using a regression model from a Design of Experiments (DOEX) derived test matrix.
Technical Paper

Aerodynamic Characterization of a Sportscar Prototype Racecar Using Design of Experiments in a Wind Tunnel Test

Application of a formally designed experiment to wind tunnel testing of a sportscar prototype was explored at the Langley Full Scale Tunnel. A two-level fractional factorial design with center points was used to determine the effect of front ride height, rear wing angle, gurney flap height, spoiler height, and yaw angle on the front downforce, rear downforce, drag, and lift-to-drag ratio of the racecar. Regression models were created for each of the responses to provide aerodynamic prediction and optimization capabilities. Prediction models provide an “aerodynamic mapping” that can be used for effective tuning of the car at the track as well as serve as a math model for numerical lap simulations.
Technical Paper

A Full-Scale Wind Tunnel Test of a Short Track Race Car

A full-scale investigative wind tunnel test was performed on a dirt track race car in the Langley Full Scale Tunnel (LFST). Lift and drag forces were measured and flow visualization studies performed for the purpose of quantifying the aerodynamic characteristics in order to assist designers and drivers of this class of vehicle. Results from the downforce measurements showed a rear axle biased aerodynamic balance. Flow visualization studies revealed large areas of separated flow on the forward portion of the side pods as well as over a large portion of the rear deck and spoiler behind the driver.
Technical Paper

A Computer Simulation of the Effect of Wind on Heavy Truck Fuel Consumption Testing

A computer simulation was developed to investigate the effect of wind on test track estimation of heavy truck fuel efficiency. Monte Carlo simulations were run for various wind conditions, both with and without gusts, and for two different vehicle aerodynamic configurations. The vehicle configurations chosen for this study are representative of typical Class 8 tractor trailers and use wind tunnel measured drag polars for performance computations. The baseline (control) case is representative of a modern streamlined tractor and conventional trailer. The comparison (test) case is the baseline case with the addition of a trailer drag reduction device (trailer skirt). The integrated drag coefficient, overall required power, total fuel consumption, and average rate of fuel consumption were calculated for a heavy truck on an oval test track to show the effect of wind on test results.