Refine Your Search

Topic

Search Results

Standard

Universal Joints and Driveshafts—Nomenclature—Terminology—Application

2007-01-30
CURRENT
J901_200701
The following definitions and illustrations are intended to establish common nomenclature and terminology for universal joints and driveshafts used in various driveline applications. In addition, useful guidelines are included for the application of universal joints and driveshafts. For more specific details, see Universal Joint and Driveshaft Design Manual, AE-7.
Standard

Universal Joints and Driveshafts--Nomenclature--Terminology--Application

2014-06-02
WIP
J901
The following definitions and illustrations are intended to establish common nomenclature and terminology for universal joints and driveshafts used in various driveline applications. In addition, useful guidelines are included for the application of universal joints and driveshafts. For more specific details, see Universal Joint and Driveshaft Design Manual, AE-7.
Standard

Universal Joint End Yoke Connection (Earwork)

2021-01-07
CURRENT
J2301_202101
This document specified the main dimensions and tolerances which affect interchangeability between end yoke earwork for the most common North American-used universal joints. Dimensions and tolerances of the mating universal joints are left to the discretion of the universal joint manufacturers. The term “earwork” refers to the configuration and geometry defining end yoke connections directly provided for universal joint cross attachment of drivelines. Earwork for certain styles of universal joint connections and flange connections have for a long time been proprietary to certain manufacturers. Over years of usage, proprietary rights have expired and the industry, as a whole, has used these earworks as standard. In an effort to tabulate some of the long-established practices, the following SAE Recommended Practice has been compiled. Manufacturers do from time to time, as the need arises, change tolerances or fits to better enhance component performance.
Standard

Universal Joint End Yoke Connection (Earwork)

2005-08-22
HISTORICAL
J2301_200508
This document specifies the main dimensions and tolerances, which affect interchangeability between end yoke earwork for the most common North American used universal joints. Dimensions and tolerances of the mating universal joints are left to the discretion of the universal joint manufacturers. The term “Earwork” refers to the configuration and geometry defining end yoke connections directly provided for universal joint cross attachment of drivelines. Earwork for certain styles of universal joint connections and flange connections have for a long time been proprietary to certain manufacturers. Over years of usage, proprietary rights have expired and the industry, as a whole, has used these earworks as standard. In an effort to tabulate some of the long established practices, the following SAE Recommended Practice has been compiled. Manufacturers do from time to time, as the need arises, change tolerances or fits to better enhance component performance.
Standard

Universal Joint End Yoke Connection (Earwork)

2016-01-15
HISTORICAL
J2301_201601
This document specifies the main dimensions and tolerances, which affect interchangeability between end yoke earwork for the most common North American used universal joints. Dimensions and tolerances of the mating universal joints are left to the discretion of the universal joint manufacturers. The term “Earwork” refers to the configuration and geometry defining end yoke connections directly provided for universal joint cross attachment of drivelines. Earwork for certain styles of universal joint connections and flange connections have for a long time been proprietary to certain manufacturers. Over years of usage, proprietary rights have expired and the industry, as a whole, has used these earworks as standard. In an effort to tabulate some of the long established practices, the following SAE Recommended Practice has been compiled. Manufacturers do from time to time, as the need arises, change tolerances or fits to better enhance component performance.
Standard

Measurement and Characterization of Electronically Controlled Driveline Clutch Systems

2021-04-09
CURRENT
J3011_202104
This SAE Recommended Practice covers the most common applications of electronically controlled on-demand clutch systems used in passenger (car and light truck) vehicle applications. This practice is applicable for torque modulation devices used in transfer cases, electronic limited slip differential (eLSD) cross-axle devices, rear drive module (RDM) integrated torque transfer devices with or without disconnect capability, and other related torque transfer devices.
Standard

Independent Suspension Drive Unit Spin Loss and Efficiency Testing

2020-12-01
WIP
J3243
This recommended practice describes a spin loss and efficiency test procedure for Independent Drive Units (FDU & RDU) used in light-duty vehicles. The test procedure is conducted on an axle test rig. The test matrix determines the spin loss and efficiency values at three mileage conditions of the axle and utilizes an accelerated break-in procedure.
Standard

Front-Wheel-Drive Constant Velocity Joint Boot Seals

2005-11-21
HISTORICAL
J2028_200511
This SAE Recommended Practice outlines the qualification testing and performance related criteria of elastomeric boot seals used in constant velocity joint applications. These applications are referred to as front- wheel-drive halfshafts or axles, but can also be utilized in rear-wheel-drive halfshaft applications. For additional information regarding CV joint systems and their applications refer to SAE AE-7 “Universal Joint and Driveshaft Design Manual.”
Standard

Front-Wheel-Drive Constant Velocity Joint Boot Seals

2016-01-15
CURRENT
J2028_201601
This SAE Recommended Practice outlines the qualification testing and performance related criteria of elastomeric boot seals used in constant velocity joint applications. These applications are referred to as front- wheel-drive halfshafts or axles, but can also be utilized in rear-wheel-drive halfshaft applications. For additional information regarding CV joint systems and their applications refer to SAE AE-7 “Universal Joint and Driveshaft Design Manual.”
Standard

Definition and Measurement of Transfer Case Speed-Dependent Parasitic Loss

2019-07-17
CURRENT
J2985_201907
This SAE Recommended Practice covers transfer cases used in passenger car and light truck applications. Transfer cases are of the chain, geared, manually and electronically shifted types although other configurations are possible. The operating points (speeds, temperatures, etc.) were chosen to mirror those of the United States Environmental Protection Agency Vehicle Chassis Dynamometer Driving Schedules (DDS).
Standard

Definition and Measurement of Torque Biasing Differentials

2008-08-26
HISTORICAL
J2817_200808
This SAE Recommended Practice covers passive torque biasing axle and center differentials used in passenger car and light truck applications. Differentials are of the bevel gear, helical gear and planetary types although other configurations are possible.
Standard

Definition and Measurement of Torque Biasing Differentials

2019-08-26
CURRENT
J2817_201908
This SAE Recommended Practice covers passive torque biasing axle and center differentials used in passenger car and light truck applications. Differentials are of the bevel gear, helical gear, and planetary types, although other configurations are possible.
Standard

Definition and Measurement of Power Transfer Unit Speed-Dependent Parasitic Loss

2020-12-30
CURRENT
J3039_202012
This SAE Recommended Practice covers power transfer units (PTUs) used in passenger car and sport utility vehicles to support all wheel drive (AWD) operation. PTUs are typically full-time use geared devices (see 3.1). Some PTUs have additional features such as part-time on-demand capability via electronically actuated disconnect features, and other configurations are possible.
Standard

Definition and Measurement of Beam Axle Efficiency

2022-09-14
CURRENT
J3218_202209
This SAE Recommended Practice covers beam axles utilizing hypoid gear final drives. It is a component level test, performed with three dynamometers in a “T-cell” arrangement. It includes both an efficiency characterization method, as well as a break-in method to support efficiency characterization. It was developed for beam axles used in light truck applications but may be extended to other hypoid gear drive systems.
Standard

All-Wheel Drive Systems Classification

2023-04-04
WIP
J1952
To add relevant language to cover all-wheel drive architectures as they related to electric and electrified vehicle implementations. In this SAE Recommended Practice, attention will be given to passenger cars and light trucks (through Class III).
X