Refine Your Search

Topic

Search Results

Standard

The Preparation and Use of Thermocouples for Aircraft Gas Turbine Engines

2022-09-14
CURRENT
AIR46C
This SAE Aerospace Information Report (AIR) reviews the precautions that must be taken and the corrections which must be evaluated and applied if the experimental error in measuring the temperature of a hot gas stream with a thermocouple is to be kept to a practicable minimum. Discussions will focus on Type K thermocouples, as defined in National Institute of Standards and Technology (NIST) Monograph 175 as Type K, nickel-chromium (Kp) alloy versus nickel-aluminium (Kn) alloy (or nickel-silicon alloy) thermocouples. However, the majority of the content is relevant to any thermocouple type used in gas turbine applications.
Standard

Temperature Measuring Devices Nomenclature

2018-05-03
CURRENT
ARP485A
This SAE Aerospace Recommended Practice (ARP) defines the nomenclature of temperature measuring devices. General temperature measurement related terms are defined first, followed by nomenclature specific to temperature measuring devices, particularly thermocouples.
Standard

Standard Exposed Junction Thermocouple for Controlled Conduction Errors in Measurement of Air or Exhaust Gas Temperature

2018-05-03
CURRENT
ARP690
The thermocouple design recommended herein is presented as one for which the correction to the observed emf, because of thermal conduction along the stem and wires, is within the limits presented in the accompanying figure. On referring to the figure, it is seen that no restriction is placed upon the diameter of the thermocouple or stem, and the longitudinal dimensions are expressed in terms of wire and stem diameters. The type of stem, such as packed ceramic stock, refractory insulating tubing, etc., also is left open to choice. Thus the sizes of wires and supporting stems may be varied over wide ranges to match particular requirements where conduction errors are to be limited or controlled.
Standard

Software Interfaces for Ground-Based Monitoring Systems

2001-09-01
HISTORICAL
AS4831
To establish a specification for software input and output interfaces for condition monitoring and performance programs used to monitor equipment from multiple manufacturers. The purpose of standardizing these interfaces is to improve operational flexibility and efficiency of monitoring systems as an aid to cost effectiveness (e.g., easier implementation).
Standard

Recommended Ice Bath for Reference Junctions

2018-05-03
CURRENT
ARP691
The ice bath recommended herein is similar to that described in SAE AIR 46.* Some material not presented in AIR 46, including preferred dimensions, has been added.
Standard

Prognostic Metrics for Engine Health Management Systems

2016-02-26
HISTORICAL
AIR5909
This SAE Aerospace Information Report (AIR) presents metrics for assessing the performance of prognostic algorithms applied for Engine Health Management (EHM) functions. The emphasis is entirely on prognostics and as such is intended to provide an extension and complement to such documents as AIR5871, which offers information and guidance on general prognostic approaches relevant to gas turbines, and AIR4985 which offers general metrics for evaluating diagnostic systems and their impact on engine health management activities.
Standard

Lessons Learned from Developing, Implementing, and Operating a Health Management System for Propulsion and Drive Train Systems

2018-04-05
WIP
AIR1871D
SAE Aerospace Information Report AIR1871 provides valuable insight into lessons learned in the development, implementation, and operation of various health monitoring systems for propulsion engines and drive train systems. This document provides an overview of the lessons learned for ground-based systems, oil debris monitoring systems, lubrication systems, and Health and Usage Monitoring Systems (HUMS) for military and commercial programs. For each case study, this document presents a brief technical description, the design requirements, accomplishments, lessons learned, and future recommendations. The lessons learned presented in this document represent a fragment of the knowledge gained through experience when developing and implementing a propulsion health management system. Previous versions of this document contain additional lessons learned during the 1980’s and 1990’s that may be of additional value to the reader.
Standard

Lessons Learned from Developing, Implementing, and Operating a Health Management System for Propulsion and Drive Train Systems

2017-01-19
CURRENT
AIR1871C
SAE Aerospace Information Report AIR1871 provides valuable insight into lessons learned in the development, implementation, and operation of various health monitoring systems for propulsion engines and drive train systems. This document provides an overview of the lessons learned for ground-based systems, oil debris monitoring systems, lubrication systems, and Health and Usage Monitoring Systems (HUMS) for military and commercial programs. For each case study, this document presents a brief technical description, the design requirements, accomplishments, lessons learned, and future recommendations. The lessons learned presented in this document represent a fragment of the knowledge gained through experience when developing and implementing a propulsion health management system. Previous versions of this document contain additional lessons learned during the 1980’s and 1990’s that may be of additional value to the reader.
Standard

Guidelines for Integration of Engine Monitoring Functions With On-Board Aircraft Systems

1999-03-01
HISTORICAL
AIR4061A
This SAE Aerospace Information Report (AIR) discusses physical and functional integration of main engine and auxiliary power unit (APU) monitoring with other on-board systems. It includes General Considerations, Parameter Selection and Requirements, Signal Sources, Signal Conditioning, Data Processing, Data Storage, and Data Retrieval. Engine monitoring hardware and software are discussed so that they may be properly considered in an integrated design. Civil and military aviation applications are included and delineated where requirements differ.
Standard

Guidelines for Integrating Typical Engine Health Management Functions Within Aircraft Systems

2016-11-12
CURRENT
AIR4061C
SAE Aerospace Information Report (AIR) 4061 provides best practice guidelines for the integration of Engine Health Management (EHM) system functions within aircraft systems to include both its main engine(s) and any Auxiliary Power Unit(s) (APU). This document provides an overview of some of the functions EHM typically integrates, offers some system variations encountered with different aircraft, and suggests general considerations involved with integration. It presents a sample EHM parameter coverage matrix to show the types of parameters with which a typical EHM system might interface, offers insight into signal and data processing and retrieval, and offers a view of typical EHM parameter requirements by function. Where practical, this document delineates between military and commercial practices.
Standard

Guide to Temperature Monitoring in Aircraft Gas Turbine Engines

2023-09-07
CURRENT
AIR1900B
This SAE Aerospace Information Report (AIR) provides an overview of temperature measurement techniques for various locations of aircraft gas turbine engines while focusing on current usage and methods, systems, selection criteria, and types of hardware.
Standard

Guide to Limited Engine Monitoring Systems for Aircraft Gas Turbine Engines

2016-11-29
CURRENT
AIR1873A
This Aerospace Information Report (AIR) describes a Limited Engine Monitoring System that can be used by the flight crew or the maintenance staff, or both, to monitor the health of gas turbine engines in aircraft. This AIR considers monitoring of gas path performance and mechanical parameters, and systems such as low cycle fatigue counters and engine history recorders. It also considers typical measurement system accuracies and their impact. This AIR is intended as a technical guide. It is not intended to be used as a legal document or standard. AIR 1873 supplements ARP 1587, Aircraft Gas Turbine Engine Monitoring System Guide.
Standard

Guide to Life Usage Monitoring and Parts Management for Aircraft Gas Turbine Engines

2011-09-29
CURRENT
AIR1872B
The effectiveness of Engine Life Usage Monitoring and Parts Management systems is largely determined by the aircraft-specific requirements. This document addresses the following areas: safety, life-limiting criteria, life usage algorithm development, data acquisition and management, parts life tracking, design feedback, and cost effectiveness. It primarily examines the requirements and techniques currently in use, and considers the potential impact of new technolog to the following areas: parts classification and control requirements, failure causes of life-limited parts, engine life prediction and usage measurement techniques, method validation, parts life usage data management, lessons learned, and life usage tracking benefits. SAE ARP1587 provides general guidance on the design consideration and objectives of monitoring systems for aircraft gas turbine engines.
Standard

Guide to Life Usage Monitoring and Parts Management for Aircraft Gas Turbine Engines

1998-05-01
HISTORICAL
AIR1872A
The effectiveness of Engine Life Usage Monitoring and Parts Management systems is largely determined by the aircraft-specific requirements. This document addresses the following areas: a Safety b Life-limiting criteria c Life usage algorithm development d Data acquisition and management e Parts life tracking f Design feedback g Cost effectiveness It primarily examines the requirements and techniques currently in use, and considers the potential impact of new technology to the following areas: a Parts classification and control requirements b Failure causes of life-limited parts c Engine life prediction and usage measurement techniques d Method validation e Parts life usage data management f Lessons learned g Life usage tracking benefits
X