Refine Your Search

Topic

Search Results

Standard

Test Method for the Determination of Water Concentration in Polyol Ester and Diester Aerospace Lubricants by Coulometric Karl Fischer Titration

2022-11-02
CURRENT
ARP5991A
The test method describes the procedure for the direct determination of water concentration in polyol ester and diester based aerospace lubricants by commercially available automated coulometric Karl Fischer titration instruments. The method was validated to cover the water concentration range of 150 to 3500 µg/g. The method may also be suitable for the determination of water concentrations outside this range and for other classes of fluids; however, the precision statement shall not be applicable for such uses.
Standard

Test Method for the Determination of Water Concentration in Polyol Ester and Diester Aerospace Lubricants by Coulometric Karl Fischer Titration

2016-09-12
HISTORICAL
ARP5991
The test method describes the procedure for the direct determination of water concentration in polyol ester and diester based aerospace lubricants by the commercially available automated coulometric Karl Fischer titration instrument. The method was validated to cover the water concentration range of 150 to 3500 µg/g. The method may also be suitable for the determination of water concentrations outside this range and for other classes of fluids, however, the precision statement shall not be applicable for such uses.
Standard

Test Method for the Determination of Total Acidity in Polyol Ester and Diester Gas Turbine Lubricants by Automatic Potentiometric Titration

2024-03-18
CURRENT
ARP5088C
The test method describes the procedure for determination of the total acid number (TAN) of new and degraded polyol ester and diester-based gas turbine lubricants by the potentiometric titration technique. The method was validated to cover an acidity range of 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricants.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2018-03-04
CURRENT
AS5780D
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix D Section D.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2017-08-04
HISTORICAL
AS5780C
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix D Section D.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2013-02-24
HISTORICAL
AS5780B
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix C, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2005-10-14
HISTORICAL
AS5780A
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix C, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Procedure for Development of a Test Method

2023-02-20
CURRENT
ARP8830
The document is a recommended guide for evaluating new or replacement test methods. It considers applicability, suitability, accessibility, and return on effort. Particular emphasis should be placed on completing the “strategy definition” portion of this document (Stage 2), to capture all relevant process stages and complete in a recognizable order for any specific development project. The overall process should: 1 address the rationale behind testing; 2 result in a thorough review of whether a test is fit for purpose; 3 act as a pathway for vetting if a test should be added to AS5780. If, in any project, this process is not an exact fit, users should feel free to adjust, as necessary. The process provides the following stages:
Standard

Oil Carbon Particulate Test

2020-11-10
CURRENT
ARP6223
An oil sample is placed into an open top glass vial which is then inserted into a stainless steel pressure vessel. The vessel is then sealed, pressurized, and placed into a heated aluminum block bath for 18 hours. At the end of the 18 hour time period, the vessel is removed from the heat source and allowed to cool to room temperature at which time the contents of the vial are filtered and the total sediment is reported as milligrams of sediment per 20 mL of oil.
Standard

Minisimulator Method

2022-02-11
WIP
ARP6166A
This test method is designed to simulate the synergistic combinations of oil flow, temperature cycling, hot spots, and tribology that would typically be found in a gas turbine engine. The method is intended to quantitatively characterize changes in four basic oil properties that are brought about by exposure to the afore mentioned simulated turbine engine environment: the tendency of aviation lubricants to form coke deposits, viscosity changes, total acid number changes (TAN), and oil consumption.
Standard

Minisimulator Method

2016-09-12
CURRENT
ARP6166
This test method is designed to simulate the synergistic combinations of oil flow, temperature cycling, hot spots, and tribology that would typically be found in a gas turbine engine. The method is intended to quantitatively characterize changes in four basic oil properties that are brought about by exposure to the afore mentioned simulated turbine engine environment: the tendency of aviation lubricants to form coke deposits, viscosity changes, total acid number changes (TAN), and oil consumption.
Standard

MPR Micropitting Test Method

2023-05-30
CURRENT
ARP6991
This method is designed to evaluate the micropitting performance of currently available and future aviation turbine oil formulations. Drawing on previously performed tests documented in AIR6989, the method comprises of three rings rotating against a rotating central roller configuration using the standard, commercially available PCS Instruments Micropitting Rig (MPR). A test profile has been developed between industry and academia that relies on standard, commercially available test specimens.
X