Refine Your Search

Topic

null

Search Results

Standard

Traction Coefficient Measurement

2013-02-12
WIP
ARP6243
Aviation oils provide thin lubricating films between highly stressed bearing, gear and other lubricated contacts. The stresses and shear rates cause rapid rheological changes in the oil which affect the traction (friction) between the surfaces. Thin film dynamic forces are associated with the molecular structure of the oil provided by the oil supplier. Traction force divided by the normal load (i.e. traction coefficient) can be viewed as a fundamental property of aviation oil. Its value is a function of stress, temperature and shear rate. Appropriate measurements are made under dynamic conditions to characterize aviation oil products for engineering design purposes and service performance prediction.
Standard

Test Method for the Determination of Water Concentration in Polyol Ester and Diester Aerospace Lubricants by Coulometric Karl Fischer Titration

2023-09-07
WIP
ARP5991B
The test method describes the procedure for the direct determination of water concentration in polyol ester and diester based aerospace lubricants by commercially available automated coulometric Karl Fischer titration instruments. The method was validated to cover the water concentration range of 150 to 3500 µg/g. The method may also be suitable for the determination of water concentrations outside this range and for other classes of fluids; however, the precision statement shall not be applicable for such uses.
Standard

Test Method for the Determination of Total Acidity in Polyol Ester and Diester Gas Turbine Lubricants by Automatic Potentiometric Titration

2024-03-18
ARP5088C
The test method describes the procedure for determination of the total acid number (TAN) of new and degraded polyol ester and diester-based gas turbine lubricants by the potentiometric titration technique. The method was validated to cover an acidity range of 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricants.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2023-09-27
WIP
AS5780E
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix D Section D.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2018-03-04
AS5780D
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix D Section D.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2017-08-04
AS5780C
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix D Section D.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2013-02-24
AS5780B
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix C, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Specification for Aero and Aero-Derived Gas Turbine Engine Lubricants

2005-10-14
AS5780A
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix C, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment.
Standard

Pressure-Viscosity Coefficient Measurement

2020-06-15
ARP6157A
The lubricant performance capability for aero propulsion drive systems is derived from the physical properties of the oil and performance attributes associated with the chemical properties of the oil. Physical properties, such as viscosity, pressure-viscosity coefficient and full-film traction coefficient are inherent properties of the lubricating fluid. Chemical attributes are critical for the formation of protective boundary lubricating films on the surfaces to prevent wear and scuffing. These attributes are also associated with surface initiated fatigue (micropitting). To assure performance and to provide required information for engineering design, methodology for at least five oil properties are being studied: (1) pressure-viscosity coefficient, (2) full-film traction coefficient, (3) scuffing resistance, (4) wear resistance, and (5) micropitting propensity.
Standard

Minisimulator Method

2022-02-11
WIP
ARP6166A
This test method is designed to simulate the synergistic combinations of oil flow, temperature cycling, hot spots, and tribology that would typically be found in a gas turbine engine. The method is intended to quantitatively characterize changes in four basic oil properties that are brought about by exposure to the afore mentioned simulated turbine engine environment: the tendency of aviation lubricants to form coke deposits, viscosity changes, total acid number changes (TAN), and oil consumption.
Standard

Minisimulator Method

2016-09-12
ARP6166
This test method is designed to simulate the synergistic combinations of oil flow, temperature cycling, hot spots, and tribology that would typically be found in a gas turbine engine. The method is intended to quantitatively characterize changes in four basic oil properties that are brought about by exposure to the afore mentioned simulated turbine engine environment: the tendency of aviation lubricants to form coke deposits, viscosity changes, total acid number changes (TAN), and oil consumption.
Standard

Micropitting of Bearings and Gears in Aviation

2022-12-07
AIR6989
The intent of this SAE Aerospace Information Report (AIR) is to summarize and review the E34 committee’s efforts to educate the aerospace propulsion lubrication community on the science of micropitting, its consequences, and the various tribology evaluation methods that can be employed under aviation related conditions to differentiate formulation related aggravating factors.
Standard

MPR Micropitting Test Method

2023-05-30
ARP6991
This method is designed to evaluate the micropitting performance of currently available and future aviation turbine oil formulations. Drawing on previously performed tests documented in AIR6989, the method comprises of three rings rotating against a rotating central roller configuration using the standard, commercially available PCS Instruments Micropitting Rig (MPR). A test profile has been developed between industry and academia that relies on standard, commercially available test specimens.
X