Refine Your Search

Topic

Search Results

Standard

Characterization, Conducted Immunity

2018-06-12
CURRENT
J2628_201806
The methods included in this document are: a Voltage-Temperature Design Margins. b Voltage Interruptions and Transients. c Voltage Dropouts and Dips. d Current Draw Under a Number of Conditions. e Switch Input Noise These methods are best applied during the Development stage but can be used at all stages (e.g., Pre-Qualification, Qualification or Conformity).
Standard

Characterization, Conducted Immunity

2013-07-16
HISTORICAL
J2628_201307
The methods included in this document are: a Voltage-Temperature Design Margins. b Voltage Interruptions and Transients. c Voltage Dropouts and Dips. d Current Draw Under a Number of Conditions. e Switch Input Noise These methods are best applied during the Development stage but can be used at all stages (e.g., Pre-Qualification, Qualification or Conformity).
Standard

Characterization--Conducted Immunity

2005-04-29
HISTORICAL
J2628_200504
This document establishes a method for characterizing the design margins and compatibility of electronic devices and equipment used in vehicles to various voltage fluctuations and transients over temperature.
Standard

Conducted Immunity, 250 kHz to 400 MHz, Direct Injection of Radio Frequency (RF) Power

2010-08-05
CURRENT
J1113/3_201008
This part of SAE J1113 specifies the direct RF power injection test method and procedure for testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous, narrowband conducted RF energy. This test method is applicable to all DUT leads except the RF reference ground. The test provides differential mode excitation to the DUT. Immunity measurements of complete vehicles are generally only possible by the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes or the large number of different vehicle models. Therefore, for research, development, and quality control, a laboratory measuring method for components shall be applied by the manufacturer. This method is suitable over the frequency range of 250 kHz to 400 MHz.
Standard

Electrical Interference by Conduction and Coupling - Capacitive and Inductive Coupling via Lines Other than Supply Lines

2017-11-08
CURRENT
J1113/12_201711
This SAE Standard establishes test methods for the evaluation of devices and equipment in vehicles against transient transmission by coupling via lines other than the power supply lines. The test methods demonstrates the immunity of the instrument, device, or equipment to coupled fast transient disturbances, such as those caused by switching of inductive loads, relay contact bouncing, etc. Four test methods are presented in SAE J1113-12: the capacitive coupling clamp (CCC) method the direct capacitive coupling (DCC) method the inductive coupling clamp (ICC) method the capacitive/inductive coupling (CIC) method
Standard

Electrical Interference by Conduction and Coupling---Coupling Clamp and Chattering Relay

1991-12-01
HISTORICAL
J1113/12_200010
This SAE Standard establishes a common basis for the evaluation of devices and equipment in vehicles against transient transmission by coupling via lines other than the power supply lines. The test demonstrates the immunity of the instrument, device, or equipment to coupled fast transient disturbances, such as those caused by switching of inductive loads, relay contact bouncing, etc. Two test methods are presented - Coupling Clamp and Chattering Relay.
Standard

Electrical Interference by Conduction and Coupling—Capacitive and Inductive Coupling via Lines Other than Supply Lines

2006-08-30
HISTORICAL
J1113/12_200608
This SAE Standard establishes a common basis for the evaluation of devices and equipment in vehicles against transient transmission by coupling via lines other than the power supply lines. The test demonstrates the immunity of the instrument, device, or equipment to coupled fast transient disturbances, such as those caused by switching of inductive loads, relay contact bouncing, etc. Four test methods are presented – Capacitive Coupling Clamp, Chattering Relay, Direct Capacitor Coupling, and Inductive Coupling Clamp.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields

2019-04-30
WIP
J1113/26
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields

2014-04-16
CURRENT
J1113/26_201404
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2011-06-07
HISTORICAL
J1113/13_201106
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2015-02-26
CURRENT
J1113/13_201502
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft) (16.6 Hz to 18 GHz)

2018-10-25
CURRENT
J1113/1_201810
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2, and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. In the event that an amendment is made, or a new edition is published, the new ISO document shall become part of this standard 6 months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft) (16.6 Hz to 18 GHz)

2013-10-01
HISTORICAL
J1113/1_201310
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2 and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3 , SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42, respectively. In the event that an amendment is made or a new edition is published, the new ISO document shall become part of this standard six months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42 respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Vehicle Components (Except Aircraft)—Conducted Immunity, 15 Hz to 250 kHz—All Leads

2010-08-06
CURRENT
J1113/2_201008
This document is an SAE Standard and covers the requirements for determining the immunity characteristics of automotive electronic equipment, subsystems, and systems to EM energy injected individually onto each lead. This test may be used over the frequency range of 15 Hz to 250 kHz. The method is applicable to all input, output, and power leads. The method is particularly useful in evaluating DUTs with acoustic or visible display functions.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2017-10-10
CURRENT
J1113/27_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2012-06-06
HISTORICAL
J1113/27_201206
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Electromagnetic Compatibility—Component Test Procedure—Part 42—Conducted Transient Emissions

2010-12-08
CURRENT
J1113/42_201012
This SAE Standard defines a component-level test procedure to evaluate automotive electrical and electronic components for Conducted Emissions of transients, and for other electromagnetic disturbances, along battery feed (B+) or switched ignition inputs of a Device Under Test (DUT). Test apparatus specifications outlined in this procedure were developed for components installed in the 12-V passenger cars, light trucks, 12 V heavy-duty trucks, and vehicles with 24 V systems.
Standard

Electronmagnetic Compatibility Measurement Procedure for Vehicle Components - Part 21: Immunity to Electromagnetic Fields, 30 MHz to 18 GHz, Absorber-Lined Chamber

2013-05-28
CURRENT
J1113/21_201305
This part of SAE J1113 specifies test methods and procedures for testing electromagnetic immunity (of vehicle radiation sources) of electronic components for passenger cars and commercial vehicles. To perform this test method, the electronic module along with the wiring harness (prototype or standard test harness) and peripheral devices will be subjected to the electromagnetic disturbance generated inside an absorber-lined chamber. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous narrowband electromagnetic fields. Immunity measurements of complete vehicles are generally only performed at the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes, or the large number of different vehicle models. Therefore, for research, development and quality control, a laboratory measuring method shall be applied by the manufacturers.
Standard

Function Performance Status Classification for EMC Immunity Testing

2018-09-13
CURRENT
J1812_201809
This SAE Standard provides a general method for defining the acceptable function performance status classification for the functions of automotive electronic devices upon application of the test conditions specified as described in appropriate EMC immunity test standards (for example, SAE J1113 and SAE J551). Testing of devices could be performed either on or off vehicles. Appropriate test signal and methods, Function Performance status, and test signal severity level would have to be specified in the individual cases.
Standard

Function Performance Status Classification for EMC Immunity Testing

2013-06-12
HISTORICAL
J1812_201306
This SAE Standard provides a general method for defining the acceptable function performance status classification for the functions of automotive electronic devices upon application of the test conditions specified as described in appropriate EMC immunity test standards (for example, SAE J1113 and SAE J551). Testing of devices could be performed either on or off vehicles. Appropriate test signal and methods, Function Performance status, and test signal severity level would have to be specified in the individual cases.
X