Refine Your Search

Search Results

Technical Paper

Two-Dimensional Visualization of Premixed-Charge Flame Structure in an IC Engine - SP-715

1987-02-01
870454
Flame fronts were examined in a premixed-charge, spark-ignition, ported engine using a two-dimensional visualization technique with 10 nanoseconds time resolution and 200 microns best spatial resolution. The engine had a pancake chamber, a compression ratio of 8, a TDC swirl number of 4 and was operated at 300 to 3000 rpm with stoichiometric and lean propane/air mixtures. The measurements were made far from, and near to, the cylinder wall. A pulsed laser sheet was passed through the engine and the light scattered by sub-micron TiO2 or ZrO2 seeding particles was collected by a 100 x 100 diode array with fields of view of 1 cm x 1 cm, 2 cm x 2 cm, and 9 cm x 9 cm. The thickness of the flame front is as small as, or smaller than, the 200 micron best resolution of the measurements thus confirming that premixed-charge engine turbulent flames generally appear to be wrinkled laminar flames.
Technical Paper

Three-Dimensional Visualization of Premixed-Charge Engine Flames: Islands of Reactants and Products; Fractal Dimensions; and Homogeneity

1988-02-01
881635
The structure of turbulent flames was examined in a premixed-charge, spark-ignition ported engine using a three-dimensional visualization technique with 10 ns time resolution and 350 µm best spatial resolution. The engine had a pancake chamber, a compression ratio of 8, a TDC swirl number of 4 and was operated at 300, 1200 and 2400 rpm with stoichiometric and lean propane/air mixtures. The second and third harmonic beams of an Nd-YAG laser (532 nm and 355 nm), along with the two strongest beams (first Stokes (683 nm) and first anti-Stokes (436 nm)) from a hydrogen Raman shifter pumped by the second harmonic were used to create four parallel laser sheets each of less than 300 microns thickness. The laser sheets were passed through a transparent quartz ring in the cylinder head parallel to the piston top with vertical separations between successive sheets ranging from 1.5 to 0.9 mm.
Technical Paper

Structure of Sprays from Fuel Injectors Part III: The Ford Air-Assisted Fuel Injector

1990-02-01
900478
The objective of this study is to characterize the operation of an air-assisted fuel injector. This characterization involves four sets of tests: fuel and air flow calibration; instantaneous measurements of fuel and air solenoid signals, internal pressure in the injector, and poppet lift; photographs of the spray; and droplet sizing. The injector poppet was designed to form a spray of 80° included angle. Nitrogen, instead of air, was used to assist the injection of unleaded gasoline into steady, compressed nitrogen at room temperature. The following conditions were used: nominal fuel flow rates of 10, 20, and 30 mm3/injection; spray chamber pressures of 0.1, 0.169, and 0.445 MPa; and nominal injections per minute (IPM) of 1600 and 3000. Results showed a linear increase in total fuel mass supplied to the injector as fuel solenoid pulse width was increased, except at the highest IPM and chamber pressure when the total fuel mass tended to level off.
Technical Paper

Simple Modeling of Autoignition in Diesel Engines for 3-D Computations

1993-10-01
932656
For practical, extensive 3-D computations for engine improvements, each physical submodel needs to be the simplest that is compatible with the accuracy of all other physical submodels and of the numerics. The addition of one progress variable controlled by one Arrhenius term is shown to be adequate to reproduce Diesel ignition delay in 2-D and 3-D computations. The rest of the model is that used for years by the authors to optimize combustion in reciprocating and rotary engines with premixed and non-premixed charges, including all of its model constants. This minimal Diesel autoignition submodel reproduces well trends and magnitudes of ignition delay versus chamber temperature and pressure. As in experiments, it is found that multiple ignition sources develop in rapid succession at various locations around the fuel spray after the first ignition event.
Technical Paper

On the Feasibility of Quantitative, Single-Shot, Spontaneous Raman Imaging in an Optically Accessible Engine Cylinder

1999-10-25
1999-01-3537
Two-Dimensional, single-shot spontaneous Raman measurements of methane concentration were performed in an optically accessible engine after direct injection with the use of modified air-assisted injector. The spatial resolution of the measurements was determined by the thickness of the laser sheet which was 0.8 mm. The error in the methane number density measurement was determined by the noise in the intensified camera output and was 16% of pure methane number density at the experimental conditions. Effective suppression of the stray light background was the main experimental difficulty. Satisfactory results were acquired only when the spark plug was substituted by a plug covered with a velvet-like, black piece of cloth. These preliminary results show that, for the specific engine configuration, fast mixing of the charge yields a very mild stratification after the end of injection.
Technical Paper

Mixture Preparation Effects on Ignition and Combustion in a Direct-Injection Spark-Ignition Engine

1996-10-01
962013
Planar instantaneous fuel concentration measurements were made by laser-induced fluorescence of 3-pentanone in the spark gap just prior to ignition in a direct-injection spark-ignition engine operating at a light load, highly stratified condition. The distribution of the average equivalence ratio in a circle of 1.9 mm diameter centered on the spark plug showed that a large fraction of the cycles had an equivalence ratio below the lean limit, yet acceptable combustion was achieved in those cycles. Further, weak correlation was found between the local average equivalence ratio near the spark plug and the time required to achieved a 100 kPa pressure rise above the motoring pressure, as well as other parameters which characterize the early stages of combustion. The cause for this behavior is assessed to be mixture motion during the spark discharge which continually convects fresh mixture through the spark gap during breakdown.
Technical Paper

Investigation of the Fuel Distribution in a Two-Stroke Engine with an Air-Assisted Injector

1994-03-01
940394
Results of experiments performed on a direct-injection two-stroke engine using an air-assisted injector are presented. Pressure measurements in both the engine cylinder and injector body coupled with backlit photographs of the spray provide a qualitative understanding of the spray dynamics from the oscillating poppet system. The temporal evolution of the spatial distribution of both liquid and vapor fuel were measured within the cylinder using the Exciplex technique with a new dopant which is suitable for tracing gasoline. However, a temperature dependence of the vapor phase fluorescence was found that limits the direct quantitative interpretation of the images. Investigation of a number of realizations of the vapor field at a time typical of ignition for a stratified-charge engine shows a high degree of cycle to cycle variability with some cycles exhibiting a high level of charge stratification.
Technical Paper

Initial Comparisons of Computed and Measured Hollow-Cone Sprays in an Engine

1994-03-01
940398
Efforts are reported to reproduce the distribution of liquid and vapor fuel from a pulsating hollow-cone liquid-only injector measured by the planar exciplex technique within the head cup of a motored ported single-cylinder engine operated at 1600 rpm with high swirl and a squish ratio of 75%. The injector, cup and cylinder were coaxial. The measurements show that shortly after the beginning of the injection the maximum liquid and vapor fuel concentrations are along the axis but also that the spray achieves substantial radial and axial penetrations. The engine flowfield without injection had previously been characterized by LDV and PIV and so had been the injector and its spray in constant pressure environments so that little arbitrariness was left in reproducing the spray in the engine. Two spray models were used. In one the large drops produced by the break up of the liquid sheet were introduced into the numerical field at the injector exit nearly with the poppet seat angle.
Technical Paper

Gas Versus Spray Injection: Which Mixes Faster?

1994-03-01
940895
Results are presented of 3-D computations of direct injection of gaseous methane and of liquid tetradecane through a multi-hole injector into a Diesel engine. The study focusses on the distribution of fuel/air ratio within the resulting gas and spray jets under typical Diesel conditions prior to ignition. It is shown that for a significant time after start of injection, the fraction of the vapor fuel which is in richer-than-flammable mixtures is greater in gas jets than in sprays. For methane injection, it is also shown that changing some of the flow conditions in the engine or going to a poppet-type injector, does not result in improved mixing. An explanation of these results is provided also through an analysis of the self-similar gas jet and 2-D computations of gas and spray jets into constant pressure gas. A scaling for time and axial distance in the self-similar gas jet also clarifies the results.
Technical Paper

Fuel Distribution Effects on the Combustion of a Direct-injection Stratified-Charge Engine

1995-02-01
950460
Simultaneous fuel distribution images (by shadowgraph and laser-induced fluorescence) and cylinder pressure measurements are reported for a combusting stratified-charge engine with a square cup in the head at 800 RPM and light load for two spark locations with and without swirl. Air-assisted direct-injection occurred from 130°-150° after bottom dead center (ABDC) and ignition was at 148° ABDC. The engine is ported and injection and combustion take place every 6th cycle. The complicated interaction of the squish, fuel/air jet, square cup, spark plug geometry and weak tumble gives rise to a weak crossflow toward the intake side of the engine with no swirl, but toward the exhaust side in the presence of strong swirl, skewing the spray slightly to that side.
Technical Paper

Effects of Combustion on In-Cylinder Mixing of Gaseous and Liquid Jets

1995-02-01
950467
In a previous study, the authors compared the fuel-air mixing characteristics of gas jets and sprays in Diesel engine environments in the absence of combustion. A three-dimensional model for flows and sprays was used. It was shown that mixing was slower in gas jets relative to fast-evaporating sprays. In this study, which is an extension of the previous one, the direct-injection of gasesous methane, gaseous tetradecane and liquid tetradecane are studied using the same three-dimensional model. This study concentrates on combustion. It is shown that the fuel-air mixing rate and hence the burning rate are initially slower with gas injection.
Technical Paper

Cycle-Resolved Velocity and Turbulence Measurements in an IC Engine With Combustion

1986-03-01
860320
Laser Doppler velocimetry has been used to make cycle-resolved velocity and turbulence measurements in a homogeneous-charge, spark-ignition engine. The engine had a ported intake and disc-shaped chamber with a compression ratio of 8 to 1. It was operated at a speed of 1200 rpm and with a TDC swirl number of 4. A stoichiometric propane-air mixture was used, and ignition was near the wall. The velocity measurements were made at three spatial locations at the midpoint of the clearance height. Tests were made to determine whether the presence of the flame affected the accuracy of the velocity measurements. It was found that the ensemble-averaged mean velocity shows a small deviation, and the rms fluctuation intensity is significantly influenced, but the effects appear to be confined to the flame zone. Data rates were sufficiently high in the preflame and postflame regions to determine the velocity history in each cycle (cycle resolved).
Technical Paper

Cycle-Resolved Velocity and Turbulence Measurements Near the Cylinder Wall of a Firing S.I. Engine

1986-10-01
861530
Laser Doppler velocimetry has been used to make cycle-resolved velocity and turbulence measurements in a homogeneous-charge, spark-ignition engine. The engine had a ported intake and disc-shaped chamber with a compression ratio of 7.5 to 1. It was operated at a speed of 1200 rpm and with a TDC swirl number of 4. A stoichiometric propane-air mixture was used, and ignition was near the wall. Measurements of the tangential velocity component were made in both firing and non-firing cycles at nine spatial locations along a radius 180 degrees downstream of the spark. The radial velocity component was also measured at four of the locations. All measurements were made in the center of the clearance height. Tangential component measurements were made as close as 0.5mm from the cylinder wall, and the radial component was measured as close as 1.5mm from the wall.
Technical Paper

Computations of Drop Sizes in Pulsating Sprays and of Liquid-Core Length in Vaporizing Sprays

1982-02-01
820133
Computations are reported of transient axisymmetric pulsating and evaporating sprays that account also for drop collisions and coalescence. It is found that, for the same upstream and gas conditions, pulsating injections result in smaller drops than continuous injections. The difference is particularly marked at high gas densities and is due to the inhibition of collisions and coalesce of drops generated by the gas gap in between the pulses. However, the tip penetration rates are not markedly different for continuous and pulsating injections. For transient evaporating sprays it is found that all drops except the largest evaporate within a well defined distance from the injector. Beyond this distance only vaporized liquid and entrained gas continue the penetration. For engine applications the length of the liquid core is found to be of the order of centimeters and sensitive to conditions. In particular it decreases with increasing injection pressure, gas temperature, and gas density.
Technical Paper

Comparisons of Computed and Measured Pressure in a Premixed-Charge Natural-Gas-Fueled Rotary Engine

1989-02-01
890671
The combustion chamber pressure computed with a three-dimensional model is compared with the measured one in a rotary engine fueled with mixtures of natural gas and air. The rotary engine has a rotor displacement of 654 cm3, a compression ratio of 9.4 and uses 2 ignition sparks. The model incorporates a k-ϵ submodel for turbulence, wall function submodels for turbulent wall boundary layer transport, and a hybrid laminar/mixing controlled submodel for species conversion and energy release. Nine cases are considered that cover a wide range of engine operating conditions: rpm of 2503-5798, volumetric efficiency of 35.7-100.5% and equivalence ratio of 0.59-1.15. In all cases the computed and measured pressures agree within 12%.
Technical Paper

Comparisons of Computed and Measured Hollow-Cone Sprays in an Engine

1995-02-01
950284
A second effort is reported to reproduce the distribution of fuel from a pulsating hollow-cone liquid-only poppet injector measured by the planar exciplex technique within the head cup of a motored ported single-cylinder engine operated at 1600 rpm with high swirl and a squish ratio of 75%. The injector, cup and cylinder were coaxial. The engine flowfield without injection had previously been characterized by LDV and PIV and so had been the injector and its spray in constant pressure environments. In a previous effort, the injector was assume to generate drop and the computed collapse of the spray was found to be too slow. In this work, the injector is assumed to generate liquid sheets that change shape and produce drops from their leading edges and surfaces as they propagate through the gas.
Technical Paper

Application of Two-Color Particle Image Velocimetry to a Firing Production Direct-Injection Stratified-Charge Engine

1999-03-01
1999-01-1111
A two-color Particle Image Velocimetry (PIV) technique has been applied for the first time to a firing, production, three-cylinder, two-stroke, direct-injection stratified-charge engine operated under realistic conditions. In comparison to single color PIV, two-color PIV can resolve the directional ambiguity of the velocity by cross-correlating two digitized photographic images of a particle-seeded flow field, acquired sequentially at two different light wavelengths. Such an approach is essential in complex, a priori unknown, flow fields, such as those of most I.C. engines. To gain optical access to the combustion chamber, the engine head was equipped with two optical windows in such a way that its original geometry was practically undisturbed. Although the field of view was relatively small, it covered a critical area of the combustion chamber. The measurements were made in the plane perpendicular to the engine longitudinal axis, within the crank angle range of 70 to 10 degrees BTDC.
Technical Paper

Additive Effects on Atomization and Evaporation of Diesel Fuel Under Engine Conditions

1997-02-24
970795
The objective of this work was to establish whether two detergent-type additives(A and B) influence the drop size and evaporation of two Diesel fuels (1 and 2) under Diesel engine conditions. Two experiments were performed: visualization of liquid and vapor fuel by the exciplex technique in a motored single-cylinder engine and measurement of the Sauter mean diameter, total drop cross sectional area and total drop volume by laser diffraction in a spray chamber. The same Diesel injector and pump system were used in the two experiments. The engine tests were carried out using a high aromatic content fuel (1) particularly suited for the exciplex studies. These studies showed that additive A yielded a lower vapor signal than additive B, which in turn gave a lower vapor signal than untreated fuel. Spray chamber results were obtained for both fuel 1 and 2. Additive A reduced the evaporation of fuel 1 whereas additive B gave a smaller and less consistent affect.
Technical Paper

A Study of Velocities and Turbulence Intensities Measured in Firing and Motored Engines

1987-02-01
870453
Laser Doppler velocimetry was used to make cycle-resolved velocity and turbulence measurements under motoring and firing conditions in a ported homogeneous charge S.I. engine. The engine had a flat pancake chamber with a compression ratio of 7.5. In one study, the effect of the intake velocity on TDC turbulence intensity was measured at 600, 1200, and 1800 rpm with three different intake flow rates at each speed. The TDC swirl ratio ranged from 2 to 6. The TDC turbulence intensities were found to be relatively insensitive to the intake velocity, and tended to scale more strongly with engine speed. For the combustion measurements, the engine was operated at 600, 1200, and 2400 rpm on stoichiometric and lean propane-air mixtures. Velocity measurements were made in swirling and non-swirling flows at several spatial locations on the midplane of the clearance height. The TDC swirl ratio was about 4. The measurements were made ahead, through, and behind the flame.
Technical Paper

2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine

1989-02-01
890315
Two dimensional visualization of a pulsating, hollow-cone spray was performed in a motored, ported, high swirl, cup-in-head I.C. engine, using exciplex-forming dopants in the fuel, which produced spectrally separated fluorescence from the liquid and vapor phases. Illumination was by a laser sheet approximately 200 µm thick from a frequency tripled Nd:YAG laser, and image acquisition was by a 100 × 100 pixel diode array camera interfaced to a personal computer. Liquid and vapor phase fuel distributions are reported for engine speeds of 800 rpm and 1600 rpm, over a crankangle range spanning the injection event and subsequent evaporation and mixing. The beginning of injection was at 33° BTDC at 800 rpm and 47° BTDC at 1600 rpm. At 800 rpm, the spray angle is narrower than the 60° poppet angle, as expected from previous observations in a near-quiescent spray chamber.
X