Refine Your Search

Topic

Search Results

Standard

Test Procedure to Measure the Fuel Permeability of Materials by the Cup Weight Loss Method

2018-12-12
CURRENT
J2665_201812
This test standard covers the procedure for measuring the permeation of fuel or fuel surrogates through test samples of elastomeric, plastic or composite materials, up to about 3 mm thick. The method involves filling a test cup with the test fluid (fuel or fuel surrogate), sealing test sample over the open end of the cup, and then placing the sealed container into an oven at the desired test temperature and measuring the weight loss over time. Permeation rates are calculated from the rate of weight loss and the exposed area of the test sample. Standard permeation test temperatures are 40 °C and 60 °C. Standard test fluids are Fuel C, Fuel CE10 and Fuel CM15. Other fluids, such as Fuel CMTBE15, and other volatile liquids may be tested according to this procedure as desired (SAE J1681). The method is not applicable for measuring permeation of higher boiling materials that will not completely evaporate from the exterior surface of the sample at the test temperature.
Standard

Test Procedure to Measure the Fuel Permeability of Materials by the Cup Weight Loss Method

2006-10-13
HISTORICAL
J2665_200610
This test standard covers the procedure for measuring the permeation of fuel or fuel surrogates through test samples of elastomeric, plastic or composite materials, up to about 3 mm thick. The method involves filling a test cup with the test fluid (fuel or fuel surrogate), sealing test sample over the open end of the cup, and then placing the sealed container into an oven at the desired test temperature and measuring the weight loss over time. Permeation rates are calculated from the rate of weight loss and the exposed area of the test sample. Standard permeation test temperatures are 40 °C and 60 °C. Standard test fluids are Fuel C, Fuel CE10 and Fuel CM15. Other fluids, such as Fuel CMTBE15, and other volatile liquids may be tested according to this procedure as desired (SAE J1681). The method is not applicable for measuring permeation of higher boiling materials that will not completely evaporate from the exterior surface of the sample at the test temperature.
Standard

Test Method to Measure Fluid Permeation of Polymeric Materials by Speciation

2018-12-12
CURRENT
J2659_201812
This test method described in this document covers a procedure to speciate that is, to determine the amounts of each different fuel constituent that permeates across sheets, films or slabs of plastic materials. One side of the sheet is meant to be in contact with either a liquid test fuel or a saturated test fuel vapor, the other side is meant to be exposed to an environment free of fuel. The test fuel can either be a mixture of a small (usually smaller than ten) number of hydrocarbon, alcohol and ether constituents or it can be a sample of a real automotive fuel, e.g., one that may contain hundreds of different constituents. Furthermore, Appendix A contains guidelines to speciate evaporative emissions from finished fuel system components such as fuel lines, fuel filler pipes, fuel sender units, connectors and valves.
Standard

Test Method to Measure Fluid Permeation of Polymeric Materials by Speciation

2012-07-30
HISTORICAL
J2659_201207
This test method described in this document covers a procedure to speciate that is, to determine the amounts of each different fuel constituent that permeates across sheets, films or slabs of plastic materials. One side of the sheet is meant to be in contact with either a liquid test fuel or a saturated test fuel vapor, the other side is meant to be exposed to an environment free of fuel. The test fuel can either be a mixture of a small (usually smaller than ten) number of hydrocarbon, alcohol and ether constituents or it can be a sample of a real automotive fuel, e.g., one that may contain hundreds of different constituents. Furthermore, Appendix A contains guidelines to speciate evaporative emissions from finished fuel system components such as fuel lines, fuel filler pipes, fuel sender units, connectors and valves.
Standard

Standardization of Color and Verbiage for Fuel Inlet Closures

2012-05-31
CURRENT
J2785_201205
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
Standard

Standardization of Color and Verbiage for Fuel Inlet Closures

2006-11-06
HISTORICAL
J2785_200611
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
Standard

SAE QUICK CONNECTOR SPECIFICATIONS FOR LIQUID FUEL SYSTEMS

1992-06-01
HISTORICAL
J2044_199206
This SAE Recommended Practice defines minimum functional requirements for quick connectors used in supply and return, liquid lines, for flexible tubing fuel systems. The document applies to automotive and light truck gasoline and diesel fuel systems, with operating pressures up to 500 kPa, 5 Bar, (72.5 psig), and the fuel lines and connectors routed such that continuous operating temperature exposure is less than 115 °C (239 °F). These tests apply to new fittings in assembly operations: for service operations, the male tube should be lubricated with engine oil before coupling. Vehicle O.E.M. fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the O.E.M. specification takes precedence over this document.
Standard

Requirements for Built-In Service Port for On Board Diagnostics

2008-08-11
HISTORICAL
J2744_200808
This document presents the requirements for a built-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emissions Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuates them out of, the system. This access may be used for the following evaluations: • Evaporative System Certifications Canister Loading and Purging • End-of-line Testing System Integrity • Service (e.g. OBD MIL on) Leak Location and Repair Verification • In-Use Compliance Testing Canister Loading and Purging • Inspection/Maintenance Testing System Integrity and Purge Check
Standard

Rated (Advertised) Fuel Capacity—Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2005-03-24
HISTORICAL
J398_200503
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

Rated (Advertised) Fuel Capacity - Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2012-11-01
CURRENT
J398_201211
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

Quick Connector Specification for Liquid Fuel and Vapor/Emissions Systems

1997-12-01
HISTORICAL
J2044_199712
This SAE Recommended Practice defines the minimum functional requirements for quick connectors used in supply, return, and vapor/emissions lines for flexible-tubing systems. This document applies to automotive and light truck gasoline and diesel fuel systems with operating pressure or vacuum up to 500 kPa, 5 bar, (72 psig) and operating temperatures up to 115 °C (239 °F). These tests apply to new connectors in assembly operations. Connectors must be pushed onto a mating tube end then pulled back to assure complete connection. For service operations, the mating tube should be lubricated with SAE 30 weight oil before re-connecting. Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

2002-09-13
HISTORICAL
J2044_200209
This SAE Recommended Practice defines standard tube end form dimensions so as to guarantee interchangeability between all connector designs of the same size and the standard end form. This document also defines the minimum functional requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in supply, return, and vapor/emissions in fuel systems. This document applies to automotive and light truck applications under the following conditions: a Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems. b Operating pressure up to 500 kPa, 5 bar, (72 psig). c Operating vacuum down to –50 kPa, –0.5 bar (–7.2 psi). d Operating temperatures from –40 °C (–40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form then pulling back to assure a complete connection.
Standard

QUICK CONNECTOR SPECIFICATION FOR LIQUID FUEL AND VAPOR/EMISSIONS SYSTEMS

1996-01-01
HISTORICAL
J2044_199601
This SAE Recommended Practice defines the minimum functional requirements for quick connectors used in supply, return, and vapor/emissions lines for flexible tubing systems. This document applies to automotive and light truck gasoline and diesel fuel systems with operating pressures up to 500 kPa, 5 bar, (72 psig) and operating temperatures up to 115 °C (239 °F). These tests apply to new connectors in assembly operations. Connectors must be pushed onto a mating tube end then pulled back to assure complete connection. For service operations, the mating tube should be lubricated with SAE 30 weight oil before re-connecting. Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.
Standard

Nonmetallic Fuel System Tubing with One or More Layers

2008-04-22
WIP
J2260
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as liquid-carrying or vapor-carrying component in fuel systems for gasoline, or alcohol blends with gasoline. Requirements in this document also apply to monowall tubing (one layer construction). When the construction has one or more layers of polymer-based compounds in the wall, the multilayer constructions are primarily for the purpose of improvement in permeation resistance to hydrocarbons found in various fuels. The tube construction can have a straight-wall configuration, a wall that is convoluted or corrugated, or a combination of each. It may have an innermost layer with improved electrical conductivity for use where such a characteristic is desired. The improved electrical conductivity can apply to the entire wall construction, if the tubing is a monowall. (For elastomeric based MLT constructions, refer to SAE J30 and SAE J2405).
Standard

Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials Testing

2023-05-01
CURRENT
J1681_202305
This SAE Recommended Practice presents recommendations for test fuels and fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document: a Explains commercial automotive fuel components b Defines standardized components of materials test fluids c Defines a nomenclature for test fluids d Describes handling and usage of test fuels e Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials.
Standard

Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials Testing

2000-01-10
HISTORICAL
J1681_200001
This SAE Recommended Practice presents recommendations for test fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document a Explains commercial automotive fuel components b Defines standardized components of materials test fluids c Defines a nomenclature for test fluids d Describes preparations for test fluids and e Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials.
Standard

Gasoline Dispenser Nozzle Spouts

1999-01-01
HISTORICAL
J285_199901
This SAE Recommended Practice provides standardized dimensions for nozzle spouts and a system for differentiating between "unleaded gasoline" nozzle spouts and all other fuel nozzle spouts. If emission control equipment requires unleaded gasoline exclusively and other fuels not meeting this specification are available, differentiation is accomplished by providing differences between the outside diameter of the nozzle spouts used to dispense "unleaded gasoline" and those used for all other fuels. These differences establish a basis on which fuel filler inlets that will accept only "unleaded gasoline" can be designed. Spouts used to dispense "unleaded gasoline" should have a nominal OD of 20.6 mm (13/16 in) and be straight for 85 to 95 mm (3.35 to 3.74 in) from the outlet. It is understood that tolerances and normal use may increase the spout up to 21.3 mm (0.84 in) OD. The spouts for all other fuels should have a nominal OD of 23.8 mm (15/16 in) or more.
X