Refine Your Search

Search Results

Standard

Test Methods Standard; General Requirements, Suspect/Counterfeit, Electrical, Electronic, and Electromechanical Parts

2019-03-26
WIP
AS6171B
This SAE Aerospace Standard (AS) standardizes inspection and test procedures, workmanship criteria, and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) parts. The requirements of this document apply once a decision is made to use parts with unknown chain of custody that do not have pedigree back to the original component manufacturer or have been acquired from a broker or independent distributor, or when there are other known risk elements that result in the User/Requester to have concerns about potential SC EEE parts. The tests specified by this standard may also detect occurrences of malicious tampering, although the current version of this standard is not designed specifically for this purpose. This standard ensures consistency across the supply chain for test techniques and requirements based on assessed risk associated with the application, component, supplier, and other relevant risk factors.
Standard

Test Methods Standard; General Requirements, Suspect/Counterfeit, Electrical, Electronic, and Electromechanical Parts

2018-04-18
CURRENT
AS6171A
This SAE Aerospace Standard (AS) standardizes inspection and test procedures, workmanship criteria, and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) parts. The requirements of this document apply once a decision is made to use parts with unknown chain of custody that do not have pedigree back to the original component manufacturer or have been acquired from a broker or independent distributor, or when there are other known risk elements that result in the User/Requester to have concerns about potential SC EEE parts. The tests specified by this standard may also detect occurrences of malicious tampering, although the current version of this standard is not designed specifically for this purpose. This standard ensures consistency across the supply chain for test techniques and requirements based on assessed risk associated with the application, component, supplier, and other relevant risk factors.
Standard

Test Methods Standard; General Requirements, Suspect/Counterfeit, Electrical, Electronic, and Electromechanical Parts

2016-10-30
HISTORICAL
AS6171
This SAE Aerospace Standard (AS) standardizes inspection and test procedures, workmanship criteria, and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) parts. The requirements of this document apply once a decision is made to use parts with unknown chain of custody that do not have pedigree back to the original component manufacturer, or have been acquired from a broker or independent distributor, or when there are other known risk elements that result in the User/Requester to have concerns about potential SC EEE parts. The tests specified by this standard may also detect occurrences of malicious tampering, although the current version of this standard is not designed specifically for this purpose. This standard ensures consistency across the supply chain for test techniques and requirements based on assessed risk associated with the application, component, supplier, and other relevant risk factors.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by X-Ray Photoelectron Spectroscopy (XPS) Test Method

2016-12-09
WIP
AS6171/20
This document defines capabilities and limitations of XPS as they pertain to Suspect/Counterfeit EEE part detection. Additionally, this document outlines requirements associated with the application of XPS, including training of instrument users, sample preparation, data interpretation, calibration, and reporting of test results. The Test Laboratory shall be accredited to ISO/IEC 17025 to perform one or more of the XPS Test Methods as defined in this standard. The Test Laboratory shall indicate in the ISO/IEC 17025 scope statement that they are accredited to XPS Spectral Analysis. In addition, the ISO/IEC 17025 scope statement shall indicate if the Test Laboratory is accredited to any of the following XPS Test Methods: XPS Imaging; XPS Depth Profiling; Angle Resolved XPS.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Netlist Assurance Test Methods

2016-02-15
WIP
AS6171/16
Netlist Assurance Test Methods exist to assess microcircuit designs for maliciously added, removed, or modified functions detrimental to system operation. In the context of the Microcircuit fabrication design process, these methods will be used to analyze a computer aided design (CAD) representation of the microcircuit. The Netlist Assurance Test Methods discover vulnerabilities, undisclosed functions (e.g. "kill switch", paths to leak passwords, or triggers of malicious activity) and changes from the original specifications of the devices. These methods are intended to be used with standard verification methods that the implemented design has remained unchanged through the many transformations in the design flow.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by General and Detailed External Visual Inspection (EVI), Remarking and Resurfacing, and Part Dimension Measurement

2020-11-24
WIP
AS6171/2B
This document contains a list of EVI tests that can be specified by the Requester to detect Suspect/Counterfeit EEE Parts. The following EVI tests described in this document are listed in 3.4 of AS6171 General Requirements: Method A: General EVI Method B: Detailed EVI, including Part Weight Measurement Method C: Testing for Remarking Method D: Testing for Resurfacing Method E: Part Dimensions Measurement When the SOW or the PO includes Part Packaging test(s) (refer to AS6171/15), the Responsible Test Laboratory (RTL) shall ensure that the Part Packaging test(s) are completed prior to starting the EVI test(s). This document is focused on EEE parts (herein may be referred to as “EEE parts” or “parts”). Although the examples in this document focus on microcircuits, this document applies to all EEE parts listed in the Applicability Matrix (Appendix A of AS6171 General Requirements).
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Gas Chromatography/Mass Spectrometry (GC/MS) Test Methods

2016-12-09
WIP
AS6171/21
This document defines capabilities and limitations of Gas Chromatography/Mass Spectrometry (GC/MS) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of GC/MS including: operator training; sample preparation; various sampling techniques; data interpretation; computerized spectral matching; equipment maintenance; and reporting of data. The discussion is limited to unit mass resolution spectrometers such as quadrupole systems and electron impact ionization.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Design Recovery Test Methods

2018-08-24
WIP
AS6171/11A
This method outlines the requirements, capabilities, and limitations associated with the application of Design Recovery for the detection of counterfeit electronic parts including: Operator training; Sample preparation; Imaging techniques; Data interpretation; Design/functional matching; Equipment maintenance and; Reporting of data. The method is primarily aimed at analyses performed by circuit delayering and imaging with a scanning electron microscope or optical microscope; however, many of the concepts are applicable to other microscope and probing techniques to recover design data. The method is not intended for the purpose of manufacturing copies of a device, but rather to compare images or recover the design for determination of authenticity. If AS6171/11 is invoked in the contract, the base document, AS6171 General Requirements shall also apply. SAE Counterfeit Defect Coverage Tool
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Delid/Decapsulation/Physical Analysis Test Methods

2017-02-01
WIP
AS6171/4A
This method standardizes inspection, test procedures and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) components or parts utilizing Delid/Decapsulation Physical Analysis. The methods described in this document are employed to either delid or remove the cover from a hermetically sealed package or to remove the encapsulation or coating of an EEE part, in order to examine the internal structure and to determine if the part is suspect counterfeit. Information obtained from this inspection and analysis may be used to: a. prevent inclusion of counterfeit parts in the assembly b. identify defective parts c. aid in disposition of parts that exhibit anomalies This test method should not be confused with Destructive Physical Analysis as defined in MIL-STD-1580. MIL-STD-1580 describes destructive physical analysis procedures for inspection and interpretation of quality issues.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Delid/Decapsulation Physical Analysis Test Methods

2016-10-30
CURRENT
AS6171/4
This method standardizes inspection, test procedures and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) components or parts utilizing Delid/Decapsulation Physical Analysis. The methods described in this document are employed to either delid or remove the cover from a hermetically sealed package or to remove the encapsulation or coating of an EEE part, in order to examine the internal structure and to determine if the part is suspect counterfeit. Information obtained from this inspection and analysis may be used to: a prevent inclusion of counterfeit parts in the assembly b identify defective parts c aid in disposition of parts that exhibit anomalies This test method should not be confused with Destructive Physical Analysis as defined in MIL-STD-1580. MIL-STD-1580 describes destructive physical analysis procedures for inspection and interpretation of quality issues.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Auger Electron Spectroscopy (AES) Test Method

2016-12-09
WIP
AS6171/19
This document defines capabilities and limitations of Auger Electron Spectroscopy (AES) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of AES including: operator training and requirements; sample preparation; data interpretation and reporting of data.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Acoustic Microscopy (AM) Test Methods

2017-09-11
WIP
AS6171/6A
Through the use of ultra-high frequency ultrasound, typically above 10 MHz, Acoustic Microscopy (AM) non-destructively finds and characterizes physical features and latent defects (visualization of interior features in a layer by layer process) - such as material continuity and discontinuities, sub-surface flaws, cracks, voids, delaminations and porosity. AM observed features and defects can be indicators that the components were improperly handled, stored, altered or previously used. If AS6171/6 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Acoustic Microscopy (AM) Test Methods

2016-10-30
CURRENT
AS6171/6
Through the use of ultra-high frequency ultrasound, typically above 10 MHz, Acoustic Microscopy (AM) non-destructively finds and characterizes physical features and latent defects (visualization of interior features in a layer by layer process) - such as material continuity and discontinuities, sub-surface flaws, cracks, voids, delaminations and porosity. AM observed features and defects can be indicators that the components were improperly handled, stored, altered or previously used. If AS6171/6 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Thermomechanical Analysis (TMA) Test Methods

2016-12-09
WIP
AS6171/18
This test method provides the capabilities, limitations, and suggested possible applications of TMA as it pertains to detection of suspect/counterfeit EEE parts. Additionally, this document outlines requirements associated with the application of TMA including: equipment requirements, test sample requirements, methodology, control and calibration, data analysis, reporting, and qualification and certification.
Standard

Techniques for Suspect/Counterfeit EEE Assembly Detection by Various Test Methods

2017-09-22
WIP
AS6171/23
The intent of this test method is to describe high level processes to detect suspect/counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) Assemblies, covering both custom and military/commercial off-the-shelf (COTS) assemblies. This standard includes requirements for accreditation and certification of Laboratory and Laboratory personnel, and also, data collection, interpretation, and reporting as applicable to this test method. This standard covers EEE assemblies and includes electronic circuit card assemblies as defined under the definition for EEE Assembly and Electronic Circuit Card Assembly.
Standard

Technique for Suspect/Counterfeit EEE Parts Detection by Secondary Ion Mass Spectrometry (SIMS) Test Methods

2015-09-18
WIP
AS6171/13
This document defines the capabilities and limitations of SIMS as they pertain to Suspect/Counterfeit EEE part detection. Additionally, this document outlines requirements associated with the application of SIMS including: operator training, sample preparation, data interpretation, equipment maintenance, and reporting of data. The Test Laboratory shall be accredited to ISO/IEC 17025 to perform the SIMS Test Method as defined in this standard. The Test Laboratory shall indicate in the ISO/IEC 17025 scope statement the specific method being accredited to: Option 1: All AS6171/13 Test Methods, or Option 2: All AS6171/13 Test Methods except 2D Imaging and 3D Imaging, or Option 3: All AS6171/13 Test Methods except Depth Profiling and 3D Imaging. If SAE AS6171/13 is invoked in the contract, the base document, AS6171 General Requirements, shall also apply.
Standard

Technique for Suspect/Counterfeit EEE Parts Detection by Scanning Electron Microscopy (SEM) including Energy Dispersive X-Ray Spectroscopy Test Methods

2017-06-13
WIP
AS6171/22
To define capabilities and limitations of SEM-EDS as it pertains to counterfeit detection of EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of SEM-EDS including: Operator training; Sample preparation; Data interpretation; Equipment maintenance; and Reporting of data. If SAE AS6171/22 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Technique for Suspect/Counterfeit EEE Parts Detection by Laser Scanning Microscopy (LSM) and Confocal Laser Scanning Microscopy (CLSM) Test Methods

2015-12-17
WIP
AS6171/17
This document defines capabilities and limitations of LSM and CLSM as they pertain to suspect/counterfeit EEE part detection. Additionally, this document outlines requirements associated with the application of LSM and CLSM including: operator training, sample preparation, various imaging techniques, data interpretation, calibration, and reporting of test results. This test method is primarily directed to analyses performed in the visible to near infrared range (approximately 400nm to 1100nm). The Test Laboratory shall be accredited to ISO/IEC 17025 to perform the LSM and CLSM Test Methods as defined in this standard. The Test Laboratory shall indicate in the ISO/IEC 17025 Scope statement, the specific method being accredited to: Option 1: All AS6171/17 Test Methods, or Option 2: All AS6171/17 Test Methods except CLSM. If SAE AS6171/17 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

TECHNIQUES FOR SUSPECT/COUNTERFEIT EEE PARTS DETECTION BY RADIATED ELECTROMAGNETIC EMISSION (REME) ANALYSIS TEST METHODS

2016-05-16
WIP
AS6171/14
The intent of this document is to define the methodology for suspect/counterfeit parts inspection using REME Analysis. The purpose of REME Analysis for suspect counterfeit part inspection is to detect misrepresentation or tampering of a part. REME Analysis can also potentially detect unintentional damage to the part resulting from improper removal of the part from assemblies, exposure to electrostatic discharge, exposure to radiation outside of acceptable limits (ionizing or high-power electromagnetic), or degradation. Improper removal of part from assemblies may include, but is not limited to, prolonged elevated temperature exposure during desoldering operations or mechanical stresses during removal. Degradation may include, but is not limited to, prolonged burn-in/testing, exposure to out-of-specification environmental conditions, or use outside of expected electrical tolerances.
X