Refine Your Search

Topic

Search Results

Technical Paper

Vehicle-GIS Assistant Driving System for Real-time Safety Speed Warning on Mountain Roads

2017-03-28
2017-01-1400
Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
Technical Paper

Vehicle Accelerator and Brake Pedal On-Off State Judgment by Using Speed Recognition

2021-04-16
2021-01-5038
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities.
Technical Paper

The Performance Study of Air-Friction Reduction System for Hydraulic Retarder

2014-09-30
2014-01-2283
The hydraulic retarder, which is an auxiliary brake device for enhancing traffic safety, has been widely used in kinds of heavy commercial vehicles. When the vehicle equipped with the retarder is traveling in non-braking state, the transmission loss would be caused because of the stirring air between working wheels of the rotor and the stator no matter if the retarder connects in parallel or in series with the transmission [1]. This paper introduces an elaborate hydraulic retarder air-friction reduction system (AFRS) which consists of a vacuum generating module and pneumatic control module. AFRS works to reduce the air friction by decreasing the gas density between working wheels when the retarder is in non-braking state. The pneumatic control model of hydraulic retarder is built first. Then various driving conditions are considered to verify the performance of the AFRS. The stability of the AFRS is analyzed based on the complete driveline model.
Technical Paper

Speed Planning System for Commercial Vehicles in Mountainous Areas

2021-04-06
2021-01-0126
There are a large number of curves and slopes in the mountainous areas. Unreasonable acceleration and deceleration in these areas will increase the burden of the brake system and the fuel consumption of the vehicle. The main purpose of this paper is to introduce a speed planning and promotion system for commercial vehicles in mountainous areas. The wind, slope, curve, engine brake, and rolling resistances are analyzed to establish the thermal model of the brake system. Based on the thermal model, the safe speed of the brake system is acquired. The maximum safe speed on the turning section is generated by the vehicle dynamic model. And the economic speed is calculated according to the fuel consumption model. The planning speed is provided based on these models. This system can guide the driver to handle the vehicle speed more reasonably.
Technical Paper

Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber

2018-04-03
2018-01-0582
The current paper proposes a hydraulic interconnected suspension system (HIS) based on a hydraulic energy-regenerative shock absorber (HESA) comparatively with the passive suspensions. The structure and working principles of the HIS system are introduced in order to investigate the damping performance and energy regeneration characteristics of the proposed system. Then, the dynamic characteristics of the HIS-HESA system have been investigated based on a 4-DOF longitudinal half vehicle model. In the simulation, two different road inputs were used in the dynamic characterization of the HIS-HESA; the warp sinusoidal excitation, and the random road signal. In addition, a comparative analysis was provided for the dynamic responses of the half vehicle model for both the HIS-HESA and the conventional suspension. Furthermore, a parametric analysis of the HIS-HESA has been carried out highlining the key parameters that have a remarkable effect on the HIS-HESA performance.
Technical Paper

Safety Speed Warning System for Tank Truck against Rollover

2021-04-06
2021-01-0978
The tank truck has a wide range of application. When the liquid in the tank is not fully loaded, the lateral movement of the liquid in the tank will shift the center of gravity of the tank truck and make the vehicle less safe. It is easy to roll over when the tank truck is turning. This study combines the vehicle dynamic characteristics and geographic information, which gives the driver safe speed and safe braking distance tips before turning, to reduce the traffic accidents caused by driver's misjudgment. The dynamic model of the tank truck is established, through collecting the real-time information of the vehicle, the vehicle load and braking torque are calculated by the relevant dynamic model. The system needs to measure the deviation of the center of gravity in the tank truck movement process, and the deviation of the center of gravity has a great influence on the safety speed.
Journal Article

Road Adhesion Coefficient Identification Method Based on Vehicle Dynamics Model and Multi-Algorithm Fusion

2022-03-29
2022-01-0908
As an important input parameter of intelligent vehicle active safety technology, road adhesion coefficient is of great significance in autonomous collision avoidance, emergency braking and collision avoidance, and variable adhesion road motion control. Traditional recognition methods based on vehicle dynamics require large data volume and low solution accuracy. This paper proposes an adhesion coefficient recognition method based on Elman neural network and Kalman filter. By establishing a seven-degree-of-freedom vehicle dynamics model, dynamic parameters such as yaw angular velocity, longitudinal velocity, lateral velocity, and angular velocity of each wheel, which are easy to measure and strongly related to the road adhesion coefficient, are analyzed as the input of the neural network model.
Technical Paper

Research on Vehicle Lane Change Based on Vehicle Speed Planning

2021-04-06
2021-01-0162
Lane changing manoeuvers is an essential rudiment in vehicle driving and has a significant impact on the characteristics of traffic flow. In the case of traditional cars, the driver operates the vehicle to complete the lane change whilst for autonomous vehicles, completing the lane change requires planning the lane change trajectory and controlling the vehicle speed during the lane change. Unreasonable lane change trajectory and vehicle speed may cause the vehicle to lose stability, threaten driving safety, increase energy consumption and waste energy. This paper considers the safety and economy of the lane changing process, and proposes a new lane changing method for vehicles.
Technical Paper

Research on Road Simulator with Iterative Learning Control

2009-10-06
2009-01-2908
Road simulation experiment in laboratory is a most important method to enhance the design quality of vehicle products. Presently, two main control techniques for road simulation—remote parameter control (RPC) and minimum variance adaptive control—are both defective: the former becomes an open-loop control after generating the drive signals, however the latter is essentially a kind of gradual control. To realize the closed-loop control and increase the control quality, this article brings forward a PID open-closed loop control method. Firstly taking the original road simulator as a group to identify, a nonlinear autoregressive moving average (NARMA) model was built with the dynamic neural network. Subsequently, this plant model was used to build the open-closed loop control system mentioned above. In the closed-loop a discrete PID controller was introduced to stabilize the system, while a P-type iterative learning control (ILC) was adopted to increase the control quality.
Technical Paper

Research on Overload Dynamic Identification Based on Vehicle Vertical Characteristics

2023-04-11
2023-01-0773
With the development of highway transportation and automobile industry technology, highway truck overload phenomenon occurs frequently, which poses a danger to road safety and personnel life safety. So it is very important to identify the overload phenomenon. Traditionally, static detection is adopted for overload identification, which has low efficiency. Aiming at this phenomenon, a dynamic overload identification method is proposed. Firstly, the coupled road excitation model of vehicle speed and speed bump is established, and then the 4-DOF vehicle model of half car is established. At the same time, considering that the double input vibration of the front and rear wheels will be coupled when vehicle passes through the speed bump, the model is decoupled. Then, the vertical trajectory of the body in the front axle position is obtained by Carsim software simulation.
Technical Paper

Research on Heat Dissipation Performance of Automobile Motor Based on Heat Pipe Optimization Design

2022-03-29
2022-01-0729
In new energy vehicles, the electric motor, as the main power source, is developing toward high power density. However, its heat generation problem always affects the overall performance of the motor, so an efficient motor cooling system is especially important. In desert or water-scarce areas, liquid cooling cannot meet the needs of new energy vehicle motor cooling. When glycol or other liquid coolants are low or depleted, motor heat dissipation becomes less effective. Heat pipe is a heat dissipation technology with advantages such as fast thermal response and light weight. In this paper, by improving the heat pipe arrangement and reducing the overall mass of the heat dissipation system, a heat pipe optimization design based on a drive motor heat dissipation scheme is proposed, and the overall stability of the motor working under high temperature conditions is improved.
Technical Paper

Research on Cooperative Adaptive Cruise Control (CACC) Based on Fuzzy PID Algorithm

2023-04-11
2023-01-0682
For cooperative adaptive cruise control (CACC) system, a robust following control algorithm based on fuzzy PID principle is adopted in this paper. Firstly, a nonlinear vehicle dynamics model considering the lag of driving force and acceleration constraints was established. Then, with the vehicle’s control hierarchic, the upper controller takes the relative speed between vehicles and the spacing error as inputs to output the following vehicle's target acceleration, while the lower controller takes the target acceleration as inputs and the throttle opening and brake master cylinder pressure as outputs. For the setting of target spacing, this paper additionally considers the relative speed between vehicles and the acceleration of the front vehicle. Through testing, compared with the traditional variable safety distance model, the average distance reduces by 5.43% when leading vehicle is accelerating, while increases by 2.74% in deceleration.
Technical Paper

Pre-Curve Braking Planning of Battery Electric Vehicle Based on Vehicle Infrastructure Cooperative System

2020-10-05
2020-01-1643
Braking energy recovery is an important method for Battery Electric Vehicle (BEV) to save energy and increase driving range. The vehicle braking system performs regenerative braking control based on driver operations. Different braking operations have a significant impact on energy recovery efficiency. This paper proposes a method for planning the braking process of a BEV based on the Intelligent Vehicle Infrastructure Cooperative System (IVICS). By actively planning the braking process, the braking energy recovery efficiency is improved. Vehicles need to decelerate and brake before entering a curve. The IVICS is used to obtain information about the curve section ahead of the vehicle's driving route. Then calculating the reference speed of the curve, and obtaining the vehicle's braking target in advance, so as to actively plan the vehicle braking process.
Technical Paper

Parameter Optimization of Steering Trapezoid Mechanism Based on Hybrid Genetic Algorithm

2021-04-06
2021-01-0845
Optimization of the steering trapezoid mechanism parameter has great significance for improving vehicular handling performance and steering safety. The mathematical model of the current trapezoid mechanism design is oversimplified; Thus, the value of the optimum parameter is often not achievable. In this paper, a design model for the trapezoidal steering mechanism is proposed taking into consideration the size and kinematic constraints. Based on combining Ackerman's principle and spatial geometric relation, a multi-body dynamics design method is used to derive a nonlinear optimization model of the split steering trapezoid mechanism. In this investigation, a hybrid genetic algorithm is developed to minimize the steering error and the corresponding optimum design parameters. The selected design parameters are the bottom angle and the steering arm length of steering trapezoid mechanisms.
Technical Paper

Overload Identification System Based on Vibration State of Two-Axle Vehicle

2021-04-06
2021-01-0172
The non-contact overload recognition method refers to the method of detecting the vibration state of the vehicle through visual recognition without touching the vehicle, and then calculating the vehicle load in combination with the vehicle dynamics model to determine whether the passing vehicle is overloaded. Due to the convenience of detection, low cost of infrastructure and informatization, this method has great advantages in the field of overload identification. However, the model used in this recognition method is the single mass vibration model at present, which will have a large error due to the interaction between the front and rear suspension, and the position of the center of mass needs to be acquired in the recognition process, which is difficult in the actual identification process. In this paper, a vehicle vibration model containing two modes of vibration is proposed, and uses Sobol algorithm to analyze the parameter sensitivity of the model.
Technical Paper

Over-the-Horizon Safety Speed Warning System for Heavy-Duty Vehicle in Mountain Areas

2017-03-28
2017-01-0091
The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
Technical Paper

On-Board Mass and Center of Gravity of Motor Vehicles Measurement System

2017-03-28
2017-01-0431
The heavy-duty vehicles have large transportation capacity. Gross mass and center of gravity position of the heavy-duty vehicles vary with the cargo mass and the driving condition, which affect driving safety and handling stability. Gross mass and center of gravity position of the vehicles are usually measured on fixed test platform, and the vehicles are stationary or pass the platform slowly in the measurement process. Most dynamic weighing system could not measure the center of gravity position of the vehicles. On-board mass and center of gravity of motor vehicles measurement system mainly based on the tire pressure information could measure gross mass and center of gravity position accurately in the driving process. The measurement errors of the sensors are effectively decreased by filtering collected sensor data. The relationship between the tire pressure and the tire load is built when the vehicle is stationary.
Technical Paper

Low Pumping Loss Hydraulic Retarder with Helium Circulation System

2015-09-29
2015-01-2801
The hydraulic retarder, an important auxiliary brake, has been widely used in heavy vehicles. Under the non-braking working condition, the air resistance torque in the working chamber, which is formed by the rotor of hydraulic retarder's stirring the air, causes pumping loss. This research designs a new type of hydraulic retarder, whose helium is charged into working chamber through closed loop gas system under non-braking working condition, can reduce the parasitic power loss of transmission system. First, under non-braking working condition, the resistance characteristics are analyzed on the base of hydraulic retarder pumping model; then, considering some parameters, such as the volume of chambers and the initial gas pressure, the working chamber gas charge model is established, and the transient gas charge characteristics are also analyzed under non-braking working condition.
Technical Paper

Downhill Safety Assistant Driving System for Battery Electric Vehicles on Mountain Roads

2019-09-15
2019-01-2129
When driving in mountainous areas, vehicles often encounter downhill conditions. To ensure safe driving, it is necessary to control the speed of vehicles. For internal combustion engine vehicles, auxiliary brake such as engine brake can be used to alleviate the thermal load caused by the continuous braking of the friction brake. For battery electric vehicles (BEVs), regenerative braking can be used as auxiliary braking to improve brake safety. And through regenerative braking, energy can be partly converted into electrical energy and stored in accumulators (such as power batteries and supercapacitors), thus extending the mileage. However, the driver's line of sight in the mountains is limited, resulting in a certain degree of blindness in driving, so it is impossible to fully guarantee the safety and energy saving of downhill driving.
Technical Paper

Design and Simulation of Active Anti-Rollover Control System for Heavy Trucks

2022-03-29
2022-01-0909
With the rapid development of the logistics and transportation industry, heavy-duty trucks play an increasingly important role in social life. However, due to the characteristics of large cargo loads, high center of mass and relatively narrow wheelbase, the driving stability of heavy trucks are poor, and it is easy to cause rollover accidents under high-speed driving conditions, large angle steering and emergency obstacle avoidance. To improve the roll stability of heavy trucks, it is necessary to design an active anti-rollover control system, through the analysis of the yaw rate and the load transfer rate of the vehicle, driving states can be estimated during the driving process. Under the intervention of the control system, the lateral transfer rate of heavy trucks can be reduced to correct the driving posture of the vehicle body and reduce the possibility of rollover accidents.
X