Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Validation Results from Using NADSdyna Vehicle Dynamics Simulation

1997-02-24
970565
This paper presents an evaluation of a vehicle dynamics model intended to be used for the National Advanced Driving Simulator (NADS). Dynamic validation for high performance simulation is not merely a comparison between experimental and simulation plots. It involves strong insight of vehicle's subsystems mechanics, limitations of the mathematical formulations, and experimental predictions. Lateral, longitudinal, and ride dynamics are evaluated using field test data, and analytical diagnostics. The evaluation includes linear and non-linear range of vehicle dynamics response.
Technical Paper

Measured Vehicle Inertial Parameters-NHTSA’s Data Through November 1998

1999-03-01
1999-01-1336
This paper is primarily a printed listing of the National Highway Traffic Safety Administration’s (NHTSA) Light Vehicle Inertial Parameter Database. This database contains measured vehicle inertial parameters from SAE Paper 930897, “Measured Vehicle Inertial Parameters -NHTSA’s Data Through September 1992” (1), as well as parameters obtained by NHTSA since 1992. The proceeding paper contained 414 entries. This paper contains 82 new entries, for a total of 496. The majority of the entries contain complete vehicle inertial parameters, some of the entries contain tilt table results only, and some entries contain both inertia and tilt table results. This paper provides a brief discussion of the accuracy of inertial measurements. Also included are selected graphs of quantities listed in the database for some of the 1998 model year vehicles tested.
Technical Paper

Measured Vehicle Center-of-Gravity Locations - Including NHTSA's Data Through 2008 NCAP

2010-04-12
2010-01-0086
This paper is a printed listing of public domain vehicle center-of-gravity (CG) location measurements conducted on behalf of the National Highway Traffic Safety Administration (NHTSA). This paper is an extension of the 1999 SAE paper titled “Measured Vehicle Inertia Parameters - NHTSA's Data Through November 1998” ( 1 ). The previous paper contained data for 496 vehicles. This paper includes data for 528 additional vehicles tested as part of NHTSA's New Car Assessment Program (NCAP) for year 2001 through year 2008 ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ). The previous data included center-of-gravity location and mass moments-of-inertia for nearly all of the entries. The NCAP involves only the CG location measurements; so the vehicles listed in this paper do not have inertia data. This paper provides a brief discussion of the entries provided in the tabular listings as well as the accuracy of CG height measurements.
Technical Paper

Automated Steering Controller for Vehicle Testing

2007-08-05
2007-01-3647
Automating road vehicle control can increase the range and reliability of dynamic testing. Some tests, for instance, specify precise steering inputs which human test drivers are only able to approximate, adding uncertainty to the test results. An automated steering system has been developed which is capable of removing these limitations. This system enables any production car or light truck to follow a user-defined path, using global position feedback, or to perform specific steering sequences with excellent repeatability. The system adapts itself to a given vehicle s handling characteristics, and it can be installed and uninstalled quickly without damage or permanent modification to the vehicle.
Technical Paper

Analysis of Vehicle Response Data Measured During Severe Maneuvers

2000-05-15
2000-01-1644
During the past few years, the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center has generated a plethora of reliable vehicle test data during their efforts to study vehicle rollover propensity. This paper provides further analyses of a small selection of some of the data. The analyses provided here derive in part from the previous work, trying to answer some of the questions spawned by earlier analyses. The purpose of this paper is to introduce several new concepts to the study of vehicle roll stability and provide case studies using the results available from the NHTSA testing. Results from several severe maneuvers are studied in detail to gain understanding of vehicle response in these cases.
Technical Paper

A Study of Vehicle Response Asymmetries During Severe Driving Maneuvers

2004-03-08
2004-01-1788
During Phase VI of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Rollover Research Program, three of the twenty-six light vehicles tested exhibited significant response asymmetries with respect to left versus right steer maneuvers. This paper investigates possible vehicle asymmetric characteristics and unintended inputs that may cause vehicle asymmetric response. An analysis of the field test data, results from suspension and steering parameter measurements, and a summary of a computer simulation study are also given.
X