Refine Your Search

Affiliation

Search Results

Journal Article

VOC Emissions and OFP Assessment for Two Real World Urban Driving Cycles using a EURO 2 SI Car

2008-04-14
2008-01-1303
A FTIR in-vehicle on-road emission measurement system was installed in a EURO2 emissions compliant SI (Spark Ignition) car to investigate exhaust Volatile Organic Compounds (VOC) emissions and Ozone Formation Potential (OFP) under different urban traffic conditions. The real time fuel consumption and vehicle traveling speed were measured and logged. The temperatures were measured along the exhaust pipe so as to monitor the thermal characteristics and efficiency of the catalyst. Two real world driving cycles were developed with different traffic conditions. One (West Park Loop cycle) was located in a quiet area with few traffic interference and the other one (Hyde Park Loop cycle) was in a busy area with more traffic variations. The test car was pre-warmed before each test to eliminate cold start effect. The driving parameters were analyzed for two real world cycles.
Technical Paper

Understanding Catalyst Overheating Protection (COP) as a Source of Post-TWC Ammonia Emissions from Petrol Vehicle

2022-08-30
2022-01-1032
TWC exposure to extreme temperature could result in irreversible damage or thermal failure. Thus, a strategy embedded in the engine control unit (ECU) called catalyst overheating protection (COP) will be activated to prevent TWC overheating. When COP is activated, the command air-fuel ratio will be enriched to cool the catalyst monolith down. Fuel enrichment has been proven a main prerequisite for ammonia formation in hot TWCs as a by-product of NOx reduction. Hence, COP events could theoretically be a source of post-catalyst ammonia from petrol vehicles, but this theory is yet to be confirmed in published literature. This paper validated this hypothesis using a self-programmed chassis-level test. The speed of the test vehicle was set to constant while the TWC temperature was raised stepwise until a COP event was activated.
Technical Paper

The Use of a Water/Lube Oil Heat Exchanger and Enhanced Cooling Water Heating to Increase Water and Lube Oil Heating Rates in Passenger Cars for Reduced Fuel Consumption and CO2 Emissions During Cold Start.

2007-07-23
2007-01-2067
Lubricating oil takes all of the NEDC test cycle time to reach 90°C. Hence, this gives high friction losses throughout the test cycle, which leads to a significant increase in the fuel consumption. In real world driving, particularly in congested traffic, it is shown that lube oil warm-up is even slower than in the NEDC. Euro 1, 2 and 4 Ford Mondeo water and oil warm up rates in real world urban driving were determined and shown to be comparable with the results of Kunze et al. (2) for a BMW on the NEDC. This paper explores the use of forced convective heat exchange between the cooling water and the lube oil during the warm-up period. A technique of a step warm-up of the engine at 32 Nm at 2000 rpm (35% of peak power) was used and the engine lube oil and water temperature monitored. It was shown that the heat exchanger results in an increase in lube oil temperature by 4°C, which increased to 10°C if enhanced heat transfer to the water was used from an exhaust port heat exchanger.
Technical Paper

The Influence of an On Line Heated Lubricating Oil Recycler on Emissions from an IDI Passenger Car Diesel as a Function of Oil Age

2000-03-06
2000-01-0232
A method of cleaning diesel engine lubricating oil on-line was investigated using a bypass fine particulate filter followed by an infra-red heater to remove water vapour and light diesel fractions in the oil. The impact of this oil recycler on the gaseous and particulate emissions was investigated over a 300 hour oil age period. A Ford 1.8 litre IDI passenger car diesel engine was used with engine out emission sampled every 15-20 hours. The tests were carried out at 2500rpm (52% of the maximum speed) and 12.3 kW with 47 Nm load (43% of the maximum load and 29% of the maximum power). The EGR level at this condition was 15%. A stop start test cycle was used with a cold start each time and a typical test period of 2-3 hours. The results showed that the recycler had its greatest influence on emissions for fresh oil when there was a large reduction in particulate emissions due mainly to large reductions in the ash, carbon and unburned lubricating oil fractions.
Technical Paper

The Influence of an Oil Recycler on Lubricating Oil Quality with Oil Age for a Bus Using in Service Testing

2000-03-06
2000-01-0234
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater, to remove water and light diesel fractions in the oil. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical Euro 2 emissions compliance single decker buses, fitted with Cummins 6 cylinder 8.3 litre turbocharged intercooled engines. These vehicles had oil deterioration and emissions characteristics that were significantly different, in spite of their similar age and total mileage. Comparison was made with the oil quality on the same vehicles and engines with and without the on-line recycler. Oil samples were analysed about every 2000 miles. All tests started with an oil drain and fresh lubricating oil.
Technical Paper

The Influence of an Oil Recycler on Emissions with Oil Age for a Refuse Truck Using in Service Testing

2001-03-05
2001-01-0623
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 1 emissions compliance refuse trucks, fitted with Perkins Phazer 210Ti 6 litre turbocharged intercooled engines and coded as RT320 and RT321. These vehicles had emissions characteristics that were significantly different, in spite of their similar age and total mileage. RT321 showed an apparent heavier black smoke than RT320. Comparison was made with the emissions on the same vehicles and engines with and without the on-line bypass oil recycler. Engine exhaust emissions were measured about every 400 miles. Both vehicles started the test with an oil drain and fresh lubricating oil.
Technical Paper

The Influence of Lubricating Oil Age on Oil Quality and Emissions from IDI Passenger Car Diesels

1999-03-01
1999-01-1135
Two Ford IDI passenger car diesel engines, 1.6 and 1.8 litres, were tested over a 100 hour lube oil ageing period with engine out emission samples every 15 hours. The 1.6 litre engine was tested with 5% EGR and the 1.8 litre engine with 15% EGR. Comparison was also made with previous work using an older Petter AA1 engine. The three engines had different dependencies of particulate emissions on the lube oil age. The 1.6 litre engine increased the particulates from 1 to 2.5 g/kg of fuel, whereas the 1.8 litre engine first decreased the particulate emissions from 3 to 1 g/kg over 50 hours of oil age and then they increased to 2 g/kg at 100 hours. This was similar to the previous work on the Petter AA1 engine, where the emissions first decreased and then increased as the oil aged. For the 1.8 litre engine the lube oil fraction of the VOF was high with fresh oil and decreased with time for the first 50 hours and then remained steady.
Technical Paper

The Effect of Ambient Temperature on Cold Start Urban Traffic Emissions for a Real World SI Car

2004-10-25
2004-01-2903
The influence of ambient temperature on exhaust emissions for an instrumented Euro 1 SI car was determined. A real world test cycle was used, based on an urban drive cycle that was similar to the ECE urban drive cycle. It was based on four laps of a street circuit and an emissions sample bag was taken for each lap. The bag for the first lap was for the cold start emissions. An in-vehicle direct exhaust dual bag sampling technique was used to simultaneously collect exhaust samples upstream and downstream of the three-way catalyst (TWC). The cold start tests were conducted over a year, with ambient temperatures ranging from - 2°C to 32°C. The exhaust system was instrumented with thermocouples so that the catalyst light off temperature could be determined. The results showed that CO emissions for the cold start were reduced by a factor of 8 downstream of catalyst when ambient temperature rose from -2°C to 32°C, the corresponding hydrocarbon emissions were reduced by a factor of 4.
Technical Paper

Study of thermal characteristics, fuel consumption and emissions during cold start using an on-board measuring method for SI car real world urban driving

2007-07-23
2007-01-2065
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a EURO 2 emission compliant SI car equipped with real time fuel consumption measurement and temperature measurement along the exhaust pipe across the catalyst allowing the matching of thermal characteristics to emission profiles and monitor fuel consumption. The temperature profile indicated that the light-off of the catalyst took about 150∼200 seconds. The warm up of the lubricating oil and coolant water required a longer time than the catalyst did. The impact of ambient temperatures on lubricating oil and coolant water warm ups was greater than that on the light-off of the catalyst. The heat loss and energy balance were calculated during the whole cycle period. The influence of cold start on fuel consumption was investigated.
Technical Paper

Study of the Emissions Generated at Intersections for a SI Car under Real World Urban Driving Conditions

2006-04-03
2006-01-1080
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst monitored could be included in the analysis. Different turning movements (driving patterns) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was hot stable running conditions before each test, thereby negating cold start effects. To demonstrate the influence of the junction on tail-pipe emissions and fuel consumption, distance based factors were determined that compared the intersection drive-through measurements with steady speed (state) runs. Fuel consumption was increased at intersections by a factor of 1.3∼5.9.
Journal Article

Study of Thermal Characteristics and Emissions during Cold Start using an on-board Measuring Method for Modern SI Car Real World Urban Driving

2008-04-14
2008-01-1307
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a modern EURO4 emission compliant SI car equipped with temperature measurement along the exhaust pipe across the catalyst so as to match thermal characteristics to emission profiles. A free flow urban driving cycle was used for the test and four repeated journeys were conducted. The results were compared to EU emissions legislation. The results show that the warm up of the lubricating oil needed 15 minutes. The TWC needed about 200 seconds to reach full conversion efficiency. CO, THC and NOx emissions exceeded the EURO4 exhaust emission legislation. CO2 emissions were well above the type approval value of this vehicle.
Technical Paper

Reduction of Exhaust Emissions by a Synthetic Lubricating Oil with Higher Viscosity Grade and Optimized Additive Package for a Heavy Duty DI Diesel Engine Test

2008-10-06
2008-01-2489
A 10W-50 G4 synthetic lubricating oil (EULUBE oil) was tested on a heavy duty DI diesel engine under two steady state conditions. The exhaust emissions were measured and compared to a 10W-30 CF semi-synthetic lubricating oil. The EULUBE oil contained the friction reduction additive to improve the fuel economy. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Gaseous and particulates emissions were measured. Particulate size distribution was measured using ELPI and SMPS. The particulate samples were analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. The results showed a significant reduction by synthetic lubricating oil in gaseous hydrocarbon emissions, total particulate mass, particulate carbon and ash.
Technical Paper

Real World Cold Start Emissions from a Diesel Vehicle

2012-04-16
2012-01-1075
This study uses on-board measurement systems to analyze emissions from a diesel engine vehicle during the cold start period. An in-vehicle FTIR (Fourier Transform Inferred) spectrometer and a Horiba on-board measurement system (OBS-1300) were installed on a EURO3 emission-compliant 1.8 TDCi diesel van, in order to measure the emissions. Both regulated and non-regulated emissions were measured, along with an analysis of the NO/NO₂ split. A VBOX GPS system was used to log coordinates and road speed for driving parameters and emission analysis. Thermal couples were installed along the exhaust system to measure the temperatures of exhaust gases during cold start. The real-time fuel consumption was measured. The study also looks at the influence of velocity on emissions of hydrocarbons (HCs) and NOx. The cold start period of an SI-engine-powered vehicle, was typically around 200 seconds in urban driving conditions.
Technical Paper

Particle Emissions and Size Distribution across the DPF from a Modern Diesel Engine Using Pure and Blended GTL Fuels

2020-09-15
2020-01-2059
A Gas to liquid (GTL) fuel was investigated for its combustion and emission performance in an IVECO EURO5 DI diesel engine with a DOC (Diesel Oxidation Catalyst) and DPF (Diesel Particle Filter) installed. The composition of the GTL fuel was analyzed by GC-MS (gas chromatography-mass spectrometry) and showed the carbon distribution of 8-20. Selected physical properties such as density and distillation were measured. The GTL fuel was blended with standard fossil diesel fuel by ratios of diesel/GTL: 100/0, 70/30, 50/50, 30/70 and 0/100. The engine was equipped with a pressure transducer and crank angle encoder in one of its cylinders. The properties of ignition delay and maximum in-cylinder pressure were studied as a function of fraction of the GTL fuel. Particle emissions were measured using DMS500 particle size instrument at both upstream (engine out) and downstream of the DPF (DPF out) for particle number concentrations and size distribution from 5 nm to 1000 nm.
Technical Paper

Oil Quality in Diesel Engines With On Line Oil Cleaning Using a Heated Lubricating Oil Recycler

1999-03-01
1999-01-1139
SYNOPSIS A method of cleaning the oil on line was investigated using a bypass fine particulate filter followed by an infra red heater to remove water and light diesel fractions in the oil. This was tested on a range of on road vehicles and a Ford 1.8 litre IDI passenger car engine on a test bed. Comparison was made with the oil quality on the same vehicles and engines without the on-line recycler. Test times were from 200 to 1500 hours of oil ageing and some of the tests showed that the oil quality was still good after 4 times the normal oil life. The results showed that the on line oil recycler cleaning system reduced the rate of fall of the TBN and rate of increase of the TAN. There was a very significant reduction in the soot in oil and the fuel dilution. There was also a consistent reduction in all the wear metals apart from copper and a decrease in the rate of reduction of oil additives. There was also measured on the Ford IDI engine a 5% reduced fuel consumption.
Technical Paper

Influence of Oil Age on Particulate Size Distributions with an On Line Oil Recycler from an IDI Passenger Car Diesel Engine

2004-10-25
2004-01-2905
Mass weighted size distributions of particulate emissions as a function of oil age were investigated using a set of Anderson Impactors on an IDI passenger car engine test. This engine was fitted with an on-line bypass lubricating oil recycler aiming to extend the oil life, reduce fuel consumption and exhaust emissions. A stop start test cycle was used with a cold start each time and a typical cycle period of 2∼3 hours. The whole test was carried out for nearly 500 hours. The first 310 hours of testing were with the oil recycler fitted and thereafter the test continued with the oil recycler disconnected. The results show that 60∼80% of mass particulates were smaller than 1.1 μm in aerodynamic diameter with the oil recycler fitted and this percentage was reduced to 40∼60% after disconnection of the oil recycler. The changes in size distribution with oil age mainly happened in the size ranges of 1.1∼0.65 μm, 0.65∼0.43 μm and <0.43 μm.
Technical Paper

Improvements in Lubricating Oil Quality by an On Line Oil Recycler for a Refuse Truck Using in Service Testing

2001-03-05
2001-01-0699
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 1 emissions compliance refuse trucks, fitted with Perkins Phazer 210Ti 6 litre turbocharged intercooled engines and coded as RT320 and RT321. These vehicles had lubricating oil deterioration and emissions characteristics that were significantly different, in spite of their similar age and total mileage. RT321 showed an apparent heavier black smoke than RT320. Comparison was made with the oil quality and fuel and lubricating oil consumption on the same vehicles and engines with and without the on-line bypass oil recycler. Engine oils were sampled and analysed about every 400 miles. Both vehicles started the test with an oil drain and fresh lubricating oil.
Technical Paper

Impact of Traffic Conditions and Road Geometry on Real World Urban Emissions Using a SI Car

2007-04-16
2007-01-0308
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction and uphill/downhill road, and thereby the impact of road topography on emissions. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst could be monitored. Different turning movements (driving events) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was run until hot stable operating conditions were achieved before each test, thereby negating cold start effects.
Technical Paper

Impact of Ambient Temperatures on Exhaust Thermal Characteristics during Cold Start for Real World SI Car Urban Driving Tests

2005-10-24
2005-01-3896
Thermal characteristics of SI engine exhaust during cold start and warm up period were investigated for different ambient temperatures (-2 to 32 °C). A Euro 1 emission compliance SI car was tested using a real world urban driving cycle to represent typical city driving patterns and simulate ECE15 urban driving cycle. The test car was equipped with 27 thermocouples along the engine and exhaust pipes so as to measure metal and exhaust gas temperatures along the engine, exhaust and catalyst. The characteristics of thermal properties of engine, exhaust system and catalyst were studied as a function of warm up time and ambient temperature. The temperature and time of the light-off of catalyst were investigated so as to evaluate the effect of thermal properties of the catalyst on emissions. The results show that the coolant water reached the full warm up about 5 minutes in summer and 9 minutes in winter after a cold start.
Technical Paper

Effects of an on Line Bypass Oil Recycler on Emissions with Oil Age for a Bus Using in Service Testing

2001-09-24
2001-01-3677
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 2 emissions compliance single decker buses, fitted with Cummins 6 cylinder 8.3 litre turbocharged intercooled engines and coded as Bus 4063 and 4070. These vehicles had emissions characteristics that were significantly different, in spite of their similar age and total mileage. Bus 4063 showed an apparent deterioration on emissions with time while Bus 4070 showed a stabilised trend on emissions with time for their baseline tests without the recycler fitted. Comparison was made with the emissions on the same vehicles and engines with and without the on-line bypass oil recycler. Engine exhaust emissions were measured about every 2000 miles.
X