Refine Your Search

Topic

Author

Search Results

Technical Paper

Study on Performance of Diesel Engine Applied with Emulsified Diesel Fuel: The Influence of Fuel Injection Timing and Water Contents

2011-11-08
2011-32-0606
The application of emulsified fuel for diesel engines is expected to reduce NOx and soot simultaneously. The purpose of this study is to clarify the influence of water content in emulsified fuel and fuel injection timing on diesel engine performance. The engine performance of emulsified fuel was compared with the water injection method. In the water injection test, water was injected to intake manifold and diesel fuel was directly injected into combustion chamber. Two emulsified fuels of which mixing ratio of water and emulsifier to diesel fuel were 15 and 30 vol.% were tested. Engine performance and exhaust gas emission of water injection method were almost similar to those of diesel fuel, so that water presented in combustion chamber had almost no influence on engine performance. Therefore, it can be considered that the micro explosion of fuel droplet enhanced the fuel atomization and mixing of fuel and air.
Technical Paper

Study on Flame Behavior Control by the Electric Field

2015-11-17
2015-32-0738
The purpose of this study is to elucidate flame propagation behavior of homogeneous propane-air mixture under application of non-uniform electric field. A needle-shaped electrode was attached to the ceiling and a plate electrode was set at bottom of combustion chamber, so that the electric field was applied in the direction of the chamber's vertical axis. A homogeneous propane-air mixture was supplied at equivalence ratio of 1.0 and was ignited by leaser induced breakdown under atmospheric pressure and room temperature. It was found that the flame front and plate electrode were repelled each other and a thin air layer was formed between the flame and plate electrode when a relatively low positive DC non-uniform electric field was applied to the needle-shaped electrode. It might be thought that the induced current was generated in the flame front, so that the flame front and plate electrode repelled each other.
Technical Paper

Spectroscopic Study of Two-Stage High Temperature Heat Release Behavior in a Supercharged HCCI Engine using Blended Fuels

2011-08-30
2011-01-1788
This study examined the effects of fuel composition and intake pressure on two-stage high temperature heat release characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine. Light emission and absorption spectroscopic measurement techniques were used to investigate the combustion behavior in detail. Chemical kinetic simulations were also conducted to analyze the reaction mechanisms in detail. Blended fuels of dimethyl ether (DME) and methane were used in the experiments. It was found that the use of such fuel blends together with a suitable intake air flow rate corresponding to the total injected heat value gave rise to two-stage heat release behavior of the hot flame, which had the effect of moderating combustion. The results of the spectroscopic measurements and the chemical kinetic simulations revealed that the main reaction of the first stage of the hot flame heat release was one that produced CO from HCHO.
Technical Paper

Spectroscopic Measurement of Radical Behavior Under Knocking Operation, 1996

1996-10-01
962104
Emission intensity was measured at a wavelength of 395 2 nm (corresponding to the characteristic spectrum of the HCHO radical) and absorbance was measured at 306 4 nm (corresponding to that of the OH radical). The emission intensity and absorbance waveforms recorded during engine operation on n-heptane show behavior indicative of the passage and degeneracy of cool flame in the preflame reaction interval. As the combustion chamber wall temperature approached an overheated state in the transition from normal combustion to knocking operation different preflame reaction behavior was observed which is thought to correspond to the presence of a negative temperature coefficient region related to the ignition delay time.
Technical Paper

Spectroscopic Measurement of Radical Behavior Under Knocking Operation, 1995

1995-10-01
952407
The purpose of this research was to obtain a better understanding of engine knocking phenomena. Measurements were made of the behavior of formaldehyde (HCHO), an important intermediate product of cool flame reactions, and of the HCO radical, characterized by distinctive light emission during blue flame reactions. The test engine was operated on a blended fuel (50 RON) of n-heptane and iso-octane. Simultaneous measurements were made of the behavior of HCHO and the OH radical using absorption spectroscopy and of the behavior of HCO and OH radicals using emission spectroscopy. Absorbance spectroscopic measurements revealed behavior thought to correspond to the passage of a cool flame and emission spectroscopic measurements showed behavior thought to correspond to the passage of a blue flame.
Technical Paper

Spectroscopic Measurement of OH Radical Emission Behavior Using a 2-Cycle Engine

1997-10-27
978515
The aim of this research was to investigate the mechanism causing autoignition and the effect of exhaust gas recirculation (EGR) on combustion by detecting the behavior of the OH radical and other excited molecules present in the flame in a spark ignition engine. The test equipment used was a 2-cycle engine equipped with a Schnürle scavenging system. Using emission spectroscopy, the behavior of the OH radical was measured at four locations in the end zone of the combustion chamber. The OH radical plays an important role in the elemental reactions of hydrocarbon fuels. When a certain level of EGR was applied according to the engine operating conditions, the unburned gas became active owing to heat transfer from residual gas near the measurement positions on the exhaust port side and the influence of excited species in the residual gas, and autoignition tended to occur.
Technical Paper

Simultaneous measurements of absorption and emission in preflame reaction under knocking operation

2000-06-12
2000-05-0159
There is an urgent need today to improve the thermal efficiency of spark- ignition (SI) engines in order to reduce carbon dioxide emission and conserve energy in an effort to prevent global warming. However, a major obstacle to improving thermal efficiency by raising the compression ratio of SI engine is the easily occurrence of engine knocking. The result of studies done by numerous researchers have shown that knocking is an abnormal combustion in which the unburned gas in the end zone of the combustion chamber autoignites. However, the combustion reaction mechanism from autoignition to the occurrence of knocking is still not fully understood. The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.
Technical Paper

Simultaneous Analysis of Light Absorption and Emission in Preflame Reactions under Knocking Operation

2000-01-15
2000-01-1416
The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.(1-3) Absorption spectroscopy was used to measure the behavior of HCHO and OH radicals during a progression from normal combustion to knocking operation. Emission spectroscopic measurements were obtained in the same way that radical added HCO. Radical behavior in preflame reactions was thus examined on the basis of simultaneous measurements, which combined each absorption wavelength with three emission wavelength by using a monochromator and a newly developed polychromator.(4-5) When n-heptane (0 RON) and blended fuel (50 RON) were used as test fuel, it was observed that radical behavior differed between normal combustion and knocking operation and a duration of the preflame reaction was shorter during the progression from normal combustion to a condition of knocking.
Technical Paper

Performance of Air Motor with Regenerating System Designed for Propulsion of Bicycle

2011-11-08
2011-32-0615
An air motor with regenerating system for propulsion of a bicycle was newly developed. An air motor was driven by the compressed air and the bicycle was propelled. When the bicycle was decelerating, the air motor was acted as a compressor and the kinetic energy of bicycle was regenerated as compressed air. The purpose of this study is to elucidate the performance of air motor and driving characteristic of bicycle. The air motor in this study was the reciprocating piston type like an internal combustion engine, and cylinder arrangement was in-line two-cylinder. The output power increased with an increase of supply air pressure although the maximum cylinder pressure was less than the supply air pressure. The output power decreased as the revolution increased due to friction loss. The maximum cylinder pressure reduced as the rotational frequency increased because the inlet valve opening duration was decreased.
Journal Article

Optical Measurement of Autoignition and Combustion Behavior in an HCCI Engine

2010-09-28
2010-32-0089
In this study, optical measurements were made of the combustion chamber gas during operation of a Homogeneous Charge Compression Ignition (HCCI) engine in order to obtain a better understanding of the ignition and combustion characteristics. The principal issues of HCCI engines are to control the ignition timing and to optimize the combustion state following ignition. Autoignition in HCCI engines is strongly influenced by the complex low-temperature oxidation reaction process, alternatively referred to as the cool flame reaction or negative temperature coefficient (NTC) region. Accordingly, a good understanding of this low-temperature oxidation reaction process is indispensable to ignition timing control. In the experiments, spectroscopic measurement methods were applied to investigate the reaction behavior in the process leading to autoignition.
Technical Paper

Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether

2003-09-16
2003-32-0006
Attention has recently been focused on homogeneous charge compression ignition (HCCI) as an effective combustion process for resolving issues inherent to the nature of combustion. Dimethyl ether (DME; CH3OCH3) has attracted interest as a potential alternative fuel for compression ignition engines. We measured the HCCI process of DME in a test diesel engine by using a spectroscopic method. Simultaneous measurements were also done on exhaust emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Based on the experimental data, this paper discusses the relationship between the equivalence ratio and the observed tendencies.
Technical Paper

Light Emission and Absorption Spectroscopic Study of HCCI Combustion

2009-06-15
2009-01-1846
In this study, light emission and absorption spectroscopic measurement techniques were used to investigate the Homogeneous Charge Compression Ignition (HCCI) combustion process in detail, about which there have been many unclear points heretofore. The results made clear the formation behavior and wavelength bands of the chemical species produced during low-temperature reactions. Specifically, with a low level of residual gas, a light emission band was observed from a cool flame in a wavelength range of 370–470 nm. That is attributed to the light emission of formaldehyde (HCHO) produced in the cool-flame reactions. Additionally, it was found that these light emission spectra were no longer observable when residual gas was applied. The light emission spectra of the combustion flame thus indicated that residual gas has the effect of moderating cool-flame reactions.
Technical Paper

Influence of Supercharging and EGR on Multi-stage Heat Release in an HCCI Engine

2016-11-08
2016-32-0009
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest as a combustion system that offers the advantages of high efficiency and low exhaust emissions. However, it is difficult to control the ignition timing in an HCCI combustion system owing to the lack of a physical means of initiating ignition like the spark plug in a gasoline engine or fuel injection in a diesel engine. Moreover, because the mixture ignites simultaneously at multiple locations in the cylinder, it produces an enormous amount of heat in a short period of time, which causes greater engine noise, abnormal combustion and other problems in the high load region. The purpose of this study was to expand the region of stable HCCI engine operation by finding a solution to these issues of HCCI combustion.
Technical Paper

Influence of Engine Speed on Autoignition and Combustion Characteristics in a Supercharged HCCI Engine

2017-11-05
2017-32-0090
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. However, because HCCI engines lack a physical means of initiating ignition, it is difficult to control the ignition timing. Another issue of HCCI engines is that the combustion process causes the cylinder pressure to rise rapidly. The time scale is also important in HCCI combustion because ignition depends on the chemical reactions of the mixture. Therefore, we investigated the influence of the engine speed on autoignition and combustion characteristics in an HCCI engine. A four-stroke single-cylinder engine equipped with a mechanically driven supercharger was used in this study to examine HCCI combustion characteristics under different engine speeds and boost pressures.
Technical Paper

Influence of EGR on Knocking in an HCCI Engine Using an Optically Accessible Engine

2016-11-08
2016-32-0012
This study was conducted to investigate the influence of cooled recirculated exhaust gas (EGR) on abnormal combustion in a Homogenous Charge Compression Ignition (HCCI) engine. The condition of abnormal HCCI combustion accompanied by cylinder pressure oscillations was photographed with a high-speed camera using a 2-stroke optically accessible engine that enabled visualization of the entire bore area. Exhaust gas was cooled with a water-cooled intercooler for introducing cooled EGR. Experiments were conducted in which the quantity of cooled EGR introduced was varied and a comparison was made of the autoignition behavior obtained under each condition in order to investigate the influence of cooled EGR on abnormal HCCI combustion. The results revealed that cylinder pressure oscillations were reduced when cooled EGR was introduced. That reduction was found to be mainly ascribable to the effect of cooled EGR on changing the ignition timing.
Technical Paper

Influence of Combustion Chamber Wall Temperature on Combustion in an HCCI Engine Using an Alternative Fuel

2015-11-17
2015-32-0790
Internal combustion engines today are required to achieve even higher efficiency and cleaner exhaust emissions. Currently, research interest is focused on premixed compression ignition (Homogeneous Charge Compression Ignition, HCCI) combustion. However, HCCI engines have no physical means of initiating ignition such as a spark plug or the fuel injection timing and quantity. Therefore, it is difficult to control the ignition timing. In addition, combustion occurs simultaneously at multiple sites in the combustion chamber. As a result, combustion takes place extremely rapidly especially in the high load region. That makes it difficult for the engine to operate stably at high loads. This study focused on the fuel composition as a possible means to solve these problems. The effect of using fuel blends on the HCCI operating region and combustion characteristics was investigated using a single-cylinder test engine.
Technical Paper

Improvement of Engine Performance With Lean Mixture Ignited By Diesel Fuel Injection and Internal Egr

2000-06-12
2000-05-0076
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by the direct diesel fuel injection. The internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the mixture temperature. The test engine was a 4-stroke, single- cylinder direct-injection diesel engine. The cooling system was forced-air cooling and displacement volume was about 211 (cm3). The compression ratio was about 19.9:1. The experiment was made under constant engine speed of 3000 (r/min). The boost pressure was maintained at 101.3 (kPa). Five values of mass flow rate of diesel fuel injection were selected from 0.060 (g/s) to 0.167 (g/s) and five levels of back pressure: 0), 26.7, 53.3, 80.0 and 106.6 (kPa) were selected for the experiment. The effect of internal EGR is varied by the back pressure level.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Technical Paper

Engine Performance of Lean Methanol-Air Mixture Ignited by Diesel Fuel Injection Applied with Internal EGR

2000-06-19
2000-01-2012
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by direct diesel fuel injection. In this study, the internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the temperature of the mixture before the ignition. It is confirmed that the lean methanol-air mixture of air-fuel ratio between 130 and 18 could be ignited and burned when the back pressure of 80 [kPa] is added. The ignition and combustion characteristics can be improved by the internal EGR, however the engine performance and NOx emission deteriorated.
Technical Paper

Effects of Uniform and Non-uniform Electric Field on Premixed Combustion

2007-10-30
2007-32-0034
The purpose of this study is to elucidate the flame propagation behavior under the electric field application by using the constant volume vessel. The laser induced breakdown applies the ignition and Nd:YAG laser is used. A homogeneous propane-air mixture is used and three equivalence ratios, 0.7, 1.0 and 1.5 are tested. In the uniform electric field, the premixed flame rapidly propagates toward both upward and downward directions and the flame front becomes a cylindrical shape. The maximum combustion pressure decreases with an increase of input voltage because of an increase of heat loss to the electrode, however the combustion duration is hardly affected by the input voltage. In the non-uniform electric field, the flame propagation velocity of downward direction increases. The combustion enhancement effect is remarkably when the input voltage is larger than 12 kV because the brush corona occurs and intense turbulence is generated on the flame front.
X