Refine Your Search

Author

Search Results

Journal Article

Visualization and Spectroscopic Measurement of Knocking Combustion Accompanied by Cylinder Pressure Oscillations in an HCCI Engine

2013-10-15
2013-32-9166
Combustion experiments were conducted with an optically accessible engine that allowed the entire bore area to be visualized for the purpose of making clear the characteristics that induce extremely rapid HCCI combustion and knocking accompanied by cylinder pressure oscillations. The HCCI combustion regime was investigated in detail by high-speed in-cylinder visualization of autoignition and combustion and emission spectroscopic measurements. The results revealed that increasing the equivalence ratio and advancing the ignition timing caused the maximum pressure rise rate and knocking intensity to increase. In moderate HCCI combustion, the autoignited flame was initially dispersed temporally and spatially in the cylinder and then gradually spread throughout the entire cylinder.
Technical Paper

The Effects of the Compression Ratio, Equivalence Ratio, and Intake Air Temperature on Ignition Timing in an HCCI Engine Using DME Fuel

2005-10-12
2005-32-0002
Attention has recently been focused on homogeneous charge compression ignition combustion (HCCI) as an effective combustion process for resolving the essential nature of combustion. Meanwhile, dimethylether (DME) has attracted interest as a potential alternative fuel for compression ignition engines. Authors measured the combustion process of DME HCCI by using a spectroscopic method. A diesel engine was used as the test engine. The results of these analyses showed that changes in the compression ratio, intake air temperature and equivalence ratio influenced the ignition timing in the HCCI combustion process. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

Study on Performance of Diesel Engine Applied with Emulsified Diesel Fuel: The Influence of Fuel Injection Timing and Water Contents

2011-11-08
2011-32-0606
The application of emulsified fuel for diesel engines is expected to reduce NOx and soot simultaneously. The purpose of this study is to clarify the influence of water content in emulsified fuel and fuel injection timing on diesel engine performance. The engine performance of emulsified fuel was compared with the water injection method. In the water injection test, water was injected to intake manifold and diesel fuel was directly injected into combustion chamber. Two emulsified fuels of which mixing ratio of water and emulsifier to diesel fuel were 15 and 30 vol.% were tested. Engine performance and exhaust gas emission of water injection method were almost similar to those of diesel fuel, so that water presented in combustion chamber had almost no influence on engine performance. Therefore, it can be considered that the micro explosion of fuel droplet enhanced the fuel atomization and mixing of fuel and air.
Technical Paper

Study of Supercharged Gasoline HCCI Combustion by Using Spectroscopic Measurements and FT-IR Exhaust Gas Analysis

2014-11-11
2014-32-0004
One issue of Homogeneous Charge Compression Ignition (HCCI) engines that should be addressed is to suppress rapid combustion in the high-load region. Supercharging the intake air so as to form a leaner mixture is one way of moderating HCCI combustion. However, the specific effect of supercharging on moderating HCCI combustion and the mechanism involved are not fully understood yet. Therefore, experiments were conducted in this study that were designed to moderate rapid combustion in a test HCCI engine by supercharging the air inducted into the cylinder. The engine was operated under high-load levels in a supercharged state in order to make clear the effect of supercharging on expanding the stable operating region in the high-load range. HCCI combustion was investigated under these conditions by making in-cylinder spectroscopic measurements and by analyzing the exhaust gas using Fourier transform infrared (FT-IR) spectroscopy.
Technical Paper

Spectroscopic Study of Two-Stage High Temperature Heat Release Behavior in a Supercharged HCCI Engine using Blended Fuels

2011-08-30
2011-01-1788
This study examined the effects of fuel composition and intake pressure on two-stage high temperature heat release characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine. Light emission and absorption spectroscopic measurement techniques were used to investigate the combustion behavior in detail. Chemical kinetic simulations were also conducted to analyze the reaction mechanisms in detail. Blended fuels of dimethyl ether (DME) and methane were used in the experiments. It was found that the use of such fuel blends together with a suitable intake air flow rate corresponding to the total injected heat value gave rise to two-stage heat release behavior of the hot flame, which had the effect of moderating combustion. The results of the spectroscopic measurements and the chemical kinetic simulations revealed that the main reaction of the first stage of the hot flame heat release was one that produced CO from HCHO.
Technical Paper

Simultaneous measurements of absorption and emission in preflame reaction under knocking operation

2000-06-12
2000-05-0159
There is an urgent need today to improve the thermal efficiency of spark- ignition (SI) engines in order to reduce carbon dioxide emission and conserve energy in an effort to prevent global warming. However, a major obstacle to improving thermal efficiency by raising the compression ratio of SI engine is the easily occurrence of engine knocking. The result of studies done by numerous researchers have shown that knocking is an abnormal combustion in which the unburned gas in the end zone of the combustion chamber autoignites. However, the combustion reaction mechanism from autoignition to the occurrence of knocking is still not fully understood. The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.
Journal Article

Optical Measurement of Autoignition and Combustion Behavior in an HCCI Engine

2010-09-28
2010-32-0089
In this study, optical measurements were made of the combustion chamber gas during operation of a Homogeneous Charge Compression Ignition (HCCI) engine in order to obtain a better understanding of the ignition and combustion characteristics. The principal issues of HCCI engines are to control the ignition timing and to optimize the combustion state following ignition. Autoignition in HCCI engines is strongly influenced by the complex low-temperature oxidation reaction process, alternatively referred to as the cool flame reaction or negative temperature coefficient (NTC) region. Accordingly, a good understanding of this low-temperature oxidation reaction process is indispensable to ignition timing control. In the experiments, spectroscopic measurement methods were applied to investigate the reaction behavior in the process leading to autoignition.
Technical Paper

Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether

2003-09-16
2003-32-0006
Attention has recently been focused on homogeneous charge compression ignition (HCCI) as an effective combustion process for resolving issues inherent to the nature of combustion. Dimethyl ether (DME; CH3OCH3) has attracted interest as a potential alternative fuel for compression ignition engines. We measured the HCCI process of DME in a test diesel engine by using a spectroscopic method. Simultaneous measurements were also done on exhaust emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Based on the experimental data, this paper discusses the relationship between the equivalence ratio and the observed tendencies.
Technical Paper

Light Emission and Absorption Spectroscopic Study of HCCI Combustion

2009-06-15
2009-01-1846
In this study, light emission and absorption spectroscopic measurement techniques were used to investigate the Homogeneous Charge Compression Ignition (HCCI) combustion process in detail, about which there have been many unclear points heretofore. The results made clear the formation behavior and wavelength bands of the chemical species produced during low-temperature reactions. Specifically, with a low level of residual gas, a light emission band was observed from a cool flame in a wavelength range of 370–470 nm. That is attributed to the light emission of formaldehyde (HCHO) produced in the cool-flame reactions. Additionally, it was found that these light emission spectra were no longer observable when residual gas was applied. The light emission spectra of the combustion flame thus indicated that residual gas has the effect of moderating cool-flame reactions.
Technical Paper

Influences of Compression Ratio and Methane Additive on Combustion Characteristics in a DME-HCCI Engine

2005-10-24
2005-01-3745
In this study, a spectroscopic method was used to measure the combustion characteristics of a test diesel engine when operated on dimethyl ether (DME) under a homogenous charge compression ignition (HCCI) combustion process. A numerical analysis was made of the elementary reactions using Chemkin 4.0 to perform the calculations. The results of the analysis showed that compression ratio changes and the methane additive influenced the autoignition timing in the DME-HCCI combustion process. In the experiments, reducing the compression ratio delayed the time of the peak cylinder pressure until after top dead center, thereby increasing the crankshaft output and thermal efficiency. The addition of methane enabled the DME-HCCI engine to provide crankshaft output equivalent to that seen for diesel engine operation at a low equivalence ratio. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

Influence of Supercharging and EGR on Multi-stage Heat Release in an HCCI Engine

2016-11-08
2016-32-0009
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest as a combustion system that offers the advantages of high efficiency and low exhaust emissions. However, it is difficult to control the ignition timing in an HCCI combustion system owing to the lack of a physical means of initiating ignition like the spark plug in a gasoline engine or fuel injection in a diesel engine. Moreover, because the mixture ignites simultaneously at multiple locations in the cylinder, it produces an enormous amount of heat in a short period of time, which causes greater engine noise, abnormal combustion and other problems in the high load region. The purpose of this study was to expand the region of stable HCCI engine operation by finding a solution to these issues of HCCI combustion.
Technical Paper

Influence of Internal EGR on Knocking in an HCCI Engine

2015-11-17
2015-32-0807
Homogeneous Charge Compression Ignition (HCCI) engines have attracted much attention and are being widely researched as engines characterized by low emissions and high efficiency. However, one issue of HCCI engines is their limited operating range because of the occurrence of rapid combustion at high loads and misfiring at low loads. It is known that knocking accompanied by in-cylinder pressure oscillations also occurs in HCCI engines at high loads, similar to knocking seen in spark-ignition engines. In this study, HCCI combustion accompanied by in-cylinder pressure oscillations was visualized by taking high-speed photographs of the entire bore area. In addition, the influence of internal exhaust gas circulation (EGR) on HCCI knocking was also investigated. The visualized combustion images revealed that rapid autoignition occurred in the end-gas region during the latter half of the HCCI combustion process when accompanied by in-cylinder pressure oscillations.
Technical Paper

Influence of Engine Speed on Autoignition and Combustion Characteristics in a Supercharged HCCI Engine

2017-11-05
2017-32-0090
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. However, because HCCI engines lack a physical means of initiating ignition, it is difficult to control the ignition timing. Another issue of HCCI engines is that the combustion process causes the cylinder pressure to rise rapidly. The time scale is also important in HCCI combustion because ignition depends on the chemical reactions of the mixture. Therefore, we investigated the influence of the engine speed on autoignition and combustion characteristics in an HCCI engine. A four-stroke single-cylinder engine equipped with a mechanically driven supercharger was used in this study to examine HCCI combustion characteristics under different engine speeds and boost pressures.
Technical Paper

Influence of EGR on Knocking in an HCCI Engine Using an Optically Accessible Engine

2016-11-08
2016-32-0012
This study was conducted to investigate the influence of cooled recirculated exhaust gas (EGR) on abnormal combustion in a Homogenous Charge Compression Ignition (HCCI) engine. The condition of abnormal HCCI combustion accompanied by cylinder pressure oscillations was photographed with a high-speed camera using a 2-stroke optically accessible engine that enabled visualization of the entire bore area. Exhaust gas was cooled with a water-cooled intercooler for introducing cooled EGR. Experiments were conducted in which the quantity of cooled EGR introduced was varied and a comparison was made of the autoignition behavior obtained under each condition in order to investigate the influence of cooled EGR on abnormal HCCI combustion. The results revealed that cylinder pressure oscillations were reduced when cooled EGR was introduced. That reduction was found to be mainly ascribable to the effect of cooled EGR on changing the ignition timing.
Technical Paper

Influence of Combustion Chamber Wall Temperature on Combustion in an HCCI Engine Using an Alternative Fuel

2015-11-17
2015-32-0790
Internal combustion engines today are required to achieve even higher efficiency and cleaner exhaust emissions. Currently, research interest is focused on premixed compression ignition (Homogeneous Charge Compression Ignition, HCCI) combustion. However, HCCI engines have no physical means of initiating ignition such as a spark plug or the fuel injection timing and quantity. Therefore, it is difficult to control the ignition timing. In addition, combustion occurs simultaneously at multiple sites in the combustion chamber. As a result, combustion takes place extremely rapidly especially in the high load region. That makes it difficult for the engine to operate stably at high loads. This study focused on the fuel composition as a possible means to solve these problems. The effect of using fuel blends on the HCCI operating region and combustion characteristics was investigated using a single-cylinder test engine.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Journal Article

Effect of Streamer Discharge Assist on Combustion in a Supercharged HCCI Engine

2016-11-08
2016-32-0013
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest in recent years as a clean, high-efficiency combustion system. However, it is difficult to control the ignition timing in HCCI engines because they lack a physical means of inducing ignition. Another issue of HCCI engines is their narrow operating range because of misfiring that occurs at low loads and abnormal combustion at high loads. As a possible solution to these issues, this study focused on the application of a streamer discharge in the form of non-equilibrium plasma as a technique for assisting HCCI combustion. Experiments were conducted with a four-stroke single-cylinder engine fitted with an ignition electrode in the combustion chamber. A streamer discharge was continuously generated in the cylinder during a 720-degree interval from the intake stroke to the exhaust stroke.
Technical Paper

Application of Newly Developed Cellulosic Liquefaction Fuel for Diesel Engine

2009-11-03
2009-32-0132
A new bio-fuel i.e. the cellulosic liquefaction fuel (CLF) was developed for diesel engines. CLF was made from woods by direct liquefaction process. When neat CLF was supplied to diesel engine, the compression ignition did not occur, so that blend of CLF and diesel fuel was used. The engine could be operated when the mixing ratio of CLF was up to 35 wt%. CO, HC and NOx emissions were almost the same as those of diesel fuel when the mixing ratio of CLF was less than 20 wt% whereas the thermal efficiency slightly decreases with increase in CLF mixing ratio.
Technical Paper

Analysis of the Effects of a Higher Compression Ratio on HCCI Combustion Characteristics using In-cylinder Visualization and Spectroscopic Measurement

2012-10-23
2012-32-0078
Homogenous Charge Compression Ignition (HCCI) combustion experiments were conducted in this study using a single-cylinder test engine fitted with a sapphire observation window to facilitate visualization of the entire cylinder bore area. In addition to in-cylinder visualization of combustion, spectroscopic measurements were made of light emission and absorption in the combustion chamber to investigate autoignition behavior in detail. Engine firing experiments were conducted to visualize HCCI combustion over a wide range of compression ratios from 12:1 to 22:1. The results showed that increasing the compression ratio advanced the ignition timing and increased the maximum pressure rise rate, making it necessary to moderate combustion. It was also found that autoignition can be induced even in a mixture lean enough to cause misfiring by raising the intake air temperature so as to advance the overall combustion process.
Technical Paper

Analysis of the Combustion Characteristics of a HCCI Engine Operating on DME and Methane

2007-10-30
2007-32-0041
The Homogeneous Charge Compression Ignition (HCCI) engine has attracted much interest in recent years because it can simultaneously achieve high efficiency and low emissions. However, it is difficult to control the ignition timing with this type of engine because it has no physical ignition mechanism. Varying the amount of fuel supplied changes the operating load and the ignition timing also changes simultaneously. The HCCI combustion process also has the problem that combustion proceeds too rapidly. This study examined the possibility of separating ignition timing control and load control using an HCCI engine that was operated on blended test fuels of dimethyl ether (DME) and methane, which have vastly different ignition characteristics. The influence of the mixing ratios of these two test fuels on the rapidity of combustion was also investigated.
X