Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Light Emission and Absorption Spectroscopic Study of HCCI Combustion

2009-06-15
2009-01-1846
In this study, light emission and absorption spectroscopic measurement techniques were used to investigate the Homogeneous Charge Compression Ignition (HCCI) combustion process in detail, about which there have been many unclear points heretofore. The results made clear the formation behavior and wavelength bands of the chemical species produced during low-temperature reactions. Specifically, with a low level of residual gas, a light emission band was observed from a cool flame in a wavelength range of 370–470 nm. That is attributed to the light emission of formaldehyde (HCHO) produced in the cool-flame reactions. Additionally, it was found that these light emission spectra were no longer observable when residual gas was applied. The light emission spectra of the combustion flame thus indicated that residual gas has the effect of moderating cool-flame reactions.
Technical Paper

Influence of the Characteristic Length on Performance of Plasma Jet Igniters

1994-10-01
942051
The investigation regarding performance of plasma jet igniters was explored by using a constant volume vessel. This study focused on investigating the relationship between the jet effect, the hot gas jet issued from the igniter, and combustion enhancement. The hot gas penetration was visualized by the schlieren system with CCD camera and image intensifier. In the cases of small energies, 0.63 and 0.90 J, the combustion enhancement effect is similar to that of combustion jet igniter. In cases of supplied energies, 2.45 and 5.00 J, the jet effect influences on the combustion enhancement effect for small characteristic length of the igniter.
Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

2015-11-17
2015-32-0771
One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Technical Paper

Analysis of the Effects of a Higher Compression Ratio on HCCI Combustion Characteristics using In-cylinder Visualization and Spectroscopic Measurement

2012-10-23
2012-32-0078
Homogenous Charge Compression Ignition (HCCI) combustion experiments were conducted in this study using a single-cylinder test engine fitted with a sapphire observation window to facilitate visualization of the entire cylinder bore area. In addition to in-cylinder visualization of combustion, spectroscopic measurements were made of light emission and absorption in the combustion chamber to investigate autoignition behavior in detail. Engine firing experiments were conducted to visualize HCCI combustion over a wide range of compression ratios from 12:1 to 22:1. The results showed that increasing the compression ratio advanced the ignition timing and increased the maximum pressure rise rate, making it necessary to moderate combustion. It was also found that autoignition can be induced even in a mixture lean enough to cause misfiring by raising the intake air temperature so as to advance the overall combustion process.
Journal Article

Analysis of Interaction between Autoignition and Strong Pressure Wave Formation during Knock in a Supercharged SI Engine Based on High Speed Photography of the End Gas

2017-11-15
2017-32-0119
Engine knock is the one of the main issues to be addressed in developing high-efficiency spark-ignition (SI) engines. In order to improve the thermal efficiency of SI engines, it is necessary to develop effective means of suppressing knock. For that purpose, it is necessary to clarify the mechanism generating pressure waves in the end-gas region. This study examined the mechanism producing pressure waves in the end-gas autoignition process during SI engine knock by using an optically accessible engine. Occurrence of local autoignition and its development process to the generation of pressures waves were analyzed under several levels of knock intensity. The results made the following points clear. It was observed that end-gas autoignition seemingly progressed in a manner resembling propagation due to the temperature distribution that naturally formed in the combustion chamber. Stronger knock tended to occur as the apparent propagation speed of autoignition increased.
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

A Study of the Effects of Varying the Supercharging Pressure and Fuel Octane Number on Spark Ignition Engine Knocking using Spectroscopic Measurement and In-cylinder Visualization

2013-10-15
2013-32-9030
Engine downsizing with a turbocharger / supercharger has attracted attention as a way of improving the fuel economy of automotive gasoline engines, but this approach can be frustrated by the occurrence of abnormal combustion. In this study, the factors causing abnormal combustion were investigated using a supercharged, downsized engine that was built by adding a mechanical supercharger. Combustion experiments were conducted in which the fuel octane number and supercharging pressure were varied while keeping the engine speed, equivalence ratio and intake air temperature constant. In the experiments, a visualization technique was applied to photograph combustion in the combustion chamber, absorption spectroscopy was used to investigate the intermediate products of combustion, and the cylinder pressure was measured. The experimental data obtained simultaneously were then analyzed to examine the effects on combustion.
Technical Paper

A Study of Autoignition Behavior and Knock Intensity in a SI Engine under Different Engine Speed by Using In-Cylinder Visualization

2017-11-05
2017-32-0050
Internal combustion engines have been required to achieve even higher efficiency in recent years in order to address environmental concerns. However, knock induced by abnormal combustion in spark-ignition engines has impeded efforts to attain higher efficiency. Knock characteristics during abnormal combustion were investigated in this study by in-cylinder visualization and spectroscopic measurements using a four-stroke air-cooled single-cylinder engine. The results revealed that knock intensity and the manner in which the autoignited flame propagated in the end gas differed depending on the engine speed.
X